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Progress in direct drive implosion performance is being made through feedback

between experiments and codes, and physics-informed data science techniques,__
LLE

+ Direct drive applications include studies related to high-energy density plasmas, nuclear astrophysics etc.

+ Several approaches in parallel are being pursued in parallel to improve performance in proof-of-principle DT-
layered OMEGA implosions (kJ scale)

— Surrogate implosions, targeted science experiments to guide design of cryogenic implosions and
improve simulation predictability

— Improved tools for postprocessing simulations to identify signatures and potential
failure metrics

— Data driven models incorporating failure metrics to improve performance

* Modern computing is permitting large scale simulations with improved models.
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* Direct drive on OMEGA
* Improving implosion performance by improving models

— 1D physics — e.g. role of cross beam energy transfer and mitigation using laser bandwidth — evidence

from the NIF — upgrade to ray-trace models in hydrodynamic simulations
— multi-D physics — Role of perturbations - modeling and diagnosing nonuniformity
— Postprocessing tools, new signatures identifying failure mechanisms
* Improving implosion performance using physics informed data-science models

+ Scaling to Mega-Joule facilities
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Two primary laser driven approaches are being studied in the US
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Review papers/books

Lindl et al, Review National Ignition
Campaign, Phys. Plasmas 2014

OMEGA

Craxton et al, Review of Direct Drive
UV 30kJ 30TW UV 2MJ 500TW

Phys. Plasmas 2015

Betti & Hurricane, ICF via Lasers
Nature Physics, 2016

Direct-drive target Indirect-drive target

Au Hohlraum

Atzeni et al, Review of Shock Ignition
w Nuclear Fusion 2014

Tabak et al, Review of Fast Ignition
Phys. Plasmas 2005

Atzeni & Meyer-ter-vehn
Laser beams Diagnostic hole Physics of Inertial Fusion” 2005

ROCHESTE B 0000

[@ @)
{MELIORA}



OMEGA implosion studies are based on hydrodynamic scaling between OMEGA

and an ignition facility like the National Ignition Facility
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The aim is drive implosions to develop conditions for a robust hotspot and

propagating burn L
LLE
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Lasers are used to set up the conditions for a hotspot and propagating burn
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Design parameters (adiabat and implosion velocity) are varied by varying targets

and pulse shapes
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A range of diagnostics are used to study the hot spot
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Inference of the core pressure
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Several measures of target performance indicating how close an implosion is to

ignition have been identified L
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+ Rewrite Lawson for ICF using an imploding shell compressing a plasma
rather than a static plasma:

R=1[ nd 0.34
pR=], pir Pr (on >u-61 0.12Yield,,
/’K:—ﬁ p /em* m
[Pr]fgn ¢ MDi'fag

Hot spot
~5 keV

Other forms of ignition criterion using hot spot areal density and temperature**

(pR)HotSpot Tion >0.3x5 glcmz keV

*Atzeni and Caruso, Nuovo Cimento 1984 *R. Betti et al, PRL 2015

Kemp, Meyer-ter-vehn and Atzeni, PRL 2001 A. Christopherson et al, PoP (2018 and 2019)
Lindl, PoP, 2018

Spears, PoP 2012 (ITFx)
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Observations deviate from simulations with increasing convergence or decreasing
adiabat
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Implosion predictions are challenging because of the multi-scale and multi-physics

involved
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Limited simulation predictability can be due to modeling errors, uncertainties in

input to codes or engineering aspects not captured by codes
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* Direct drive on OMEGA

* Improving implosion performance by improving models

— multi-D physics — Role of perturbations - modeling and diagnosing nonuniformity
— Postprocessing tools, new signatures identifying failure mechanisms
* Improving implosion performance using physics informed data-science models

+ Scaling to Mega-Joule facilities
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Cross beam energy transfer can significantly reduce the ablation pressure
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Laser deposition models in rad-hydro codes have been improved to include the
effect of CBET

UR

As an example: introducing cross beam energy transfer models in hydrocodes
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Detuning the wavelengths of the crossing beams can improve ablation pressure as

demonstrated on the NIF U
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Port-color arrangement Port-color repointing; after swap
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NIF’s wavelength detuning capability has been used to demonstrate mitigation of

CBET in proof-of-principle experiments
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* Direct drive on OMEGA
* Improving implosion performance by improving models

— 1D physics — e.g. role of cross beam energy transfer and mitigation using laser bandwidth — evidence

from the NIF — upgrade to ray-trace models in hydrodynamic simulations
— Postprocessing tools, new signatures identifying failure mechanisms
* Improving implosion performance using physics informed data-science models

+ Scaling to Mega-Joule facilities
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Laser speckle can reduce the areal density for high IFAR implosions
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Highly resolved 3D simulations are now possible to model the effect of laser imprint
uRr
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* Direct drive on OMEGA
* Improving implosion performance by improving models

— 1D physics — e.g. role of cross beam energy transfer and mitigation using laser bandwidth — evidence

from the NIF — upgrade to ray-trace models in hydrodynamic simulations
— multi-D physics — Role of perturbations - modeling and diagnosing nonuniformity
* Improving implosion performance using physics informed data-science models

+ Scaling to Mega-Joule facilities
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Hot spot flow, diagnosed by the Doppler shift in the DT neutron peak, can result in

an inefficient conversion of the shell kinetic energy into hot spot energy

uRr
LLE
ASTER* radiation-hydrodynamic Synthetic neutron energy
simulation at peak neutron production spectrum** emitted from target
[T T I T I
?.;?gni:gensity 100 E_ — d, AE i————.
300 F =9 'L vL |
101 & 1.0 T |
250 > 3 |
o g |
200 x ] |
T 102 i 1
150 Synthetic neutron = : | L
100 diagnostics B a3l e
s 10
50 o - _
0 104 L
~ d; 13.6 14.0 14.4
\,A
10-5 L~ 1 1 | |

25 50 75 100 125 15.0
Energy (MeV)

Three-dimensional neutron diagnostics provide information on the hot-spot velocity (first moment),

apparent ion temperature (second moment), and the shell areal density (down-scatter ratio).

* L. V.Igumenshchev et al., Phys. Plasmas_23, 052702 (2016).
** F. Weilacher, P.B. Radha, and C. Forrest, Phys. Plasmas 25, 042704 (2018).

D ROCHESTE B




Implosions with large flows also indicate asymmetries in the measured width of the

neutron spectrum (apparent ion temperature variations)
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* Direct drive on OMEGA
* Improving implosion performance by improving models

— 1D physics — e.g. role of cross beam energy transfer and mitigation using laser bandwidth — evidence

from the NIF — upgrade to ray-trace models in hydrodynamic simulations
— multi-D physics — Role of perturbations - modeling and diagnosing nonuniformity
— Postprocessing tools, new signatures identifying failure mechanisms

+ Scaling to Mega-Joule facilities
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Yield degradation mechanisms have been quantified through a multi-variate

regression model with observed and simulated dependencies
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*V. Gopalaswamy, Nature 565, 581-586 (2019)
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Multi-variate regression techniques are being used in parallel to identify quantities

that determine implosion performance L
LLE
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The statistical model predicts yield accurately and is used to design higher performing

implosions
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Hydrodynamic scaling requires a modest increase in yield and areal density
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* Direct drive on OMEGA
* Improving implosion performance by improving models

— 1D physics — e.g. role of cross beam energy transfer and mitigation using laser bandwidth — evidence

from the NIF — upgrade to ray-trace models in hydrodynamic simulations
— multi-D physics — Role of perturbations - modeling and diagnosing nonuniformity
— Postprocessing tools, new signatures identifying failure mechanisms

* Improving implosion performance using physics informed data-science models
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Many coronal processes influence laser energy deposition and electron transport to

the ablation surface L
LLE
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Summary/Conclusions

Progress in direct drive implosions is being made through feedback between

experiments and codes, and physics-informed data science techniques L
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+ Direct drive applications include yield, studies related to stockpile stewardship, nuclear astrophysics, studies

of matter under extreme conditions etc.

+ Several approaches in parallel are being pursued in parallel to improve performance in proof-of-principle DT-
layered OMEGA implosions (kJ scale)

— Surrogate implosions, targeted science experiments to guide design of cryogenic implosions and
improve simulation predictability

— Improved tools for postprocessing simulations to identify signatures and potential
failure metrics

— Data driven models incorporating failure metrics to improve performance

* Modern computing is permitting large scale simulations with improved models.
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Maintaining ablation pressure till the implosion bang time is key to improving

compression
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The improved compression by maintaining ablation pressure has been

demonstrated in OMEGA implosions

Measured proton spectrum
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