Unraveling Implosion Physics in Inertial Confinement Fusion: Direct-drive

Simulations, Experiments, and Physics-Informed Data Science

P. B. Radha
Distinguished Scientist
Laboratory for Laser Energetics
University of Rochester

Seminar at MIPSE University of Michigan Nov 16, 2022

Summary

Progress in direct drive implosion performance is being made through feedback between experiments and codes, and physics-informed data science techniques

- Direct drive applications include studies related to high-energy density plasmas, nuclear astrophysics etc.
- Several approaches in parallel are being pursued in parallel to improve performance in proof-of-principle DTlayered OMEGA implosions (kJ scale)
 - Surrogate implosions, targeted science experiments to guide design of cryogenic implosions and improve simulation predictability
 - Improved tools for postprocessing simulations to identify signatures and potential failure metrics
 - Data driven models incorporating failure metrics to improve performance
- Modern computing is permitting large scale simulations with improved models.

Collaborators

Laboratory for Laser Energetics, University of Rochester

General Atomics, San Diego

Lawrence Livermore National Labs

Plasma Science and Fusion Center, MIT

Los Alamos National Labs

Naval Research Labs, Washington DC

AWE, United Kingdom

University of Bordeaux

Outline

- Direct drive on OMEGA
- Improving implosion performance by improving models
 - 1D physics e.g. role of cross beam energy transfer and mitigation using laser bandwidth evidence
 from the NIF upgrade to ray-trace models in hydrodynamic simulations
 - multi-D physics Role of perturbations modeling and diagnosing nonuniformity
 - Postprocessing tools, new signatures identifying failure mechanisms
- Improving implosion performance using physics informed data-science models
- Scaling to Mega-Joule facilities

Two primary laser driven approaches are being studied in the US

Direct-drive target

Indirect-drive target

Review papers/books

Lindl et al, Review National Ignition Campaign, Phys. Plasmas 2014

Craxton et al, Review of Direct Drive Phys. Plasmas 2015

Betti & Hurricane, ICF via Lasers Nature Physics, 2016

Atzeni et al, Review of Shock Ignition Nuclear Fusion 2014

Tabak et al, Review of Fast Ignition Phys. Plasmas 2005

Atzeni & Meyer-ter-vehn "Physics of Inertial Fusion" 2005

OMEGA implosion studies are based on hydrodynamic scaling between OMEGA and an ignition facility like the National Ignition Facility

The aim is drive implosions to develop conditions for a robust hotspot and propagating burn

Lasers are used to set up the conditions for a hotspot and propagating burn

Design parameters (adiabat and implosion velocity) are varied by varying targets

and pulse shapes

Ice thickness is varied for different implosion velocities

TC13096b

A range of diagnostics are used to study the hot spot

Several measures of target performance indicating how close an implosion is to

ignition have been identified

 Rewrite Lawson for ICF using an imploding shell compressing a plasma rather than a static plasma:

$$\chi = \frac{P\tau}{\left[P\tau\right]_{ign}} \approx \left\langle \rho R_{g/cm^2} \right\rangle^{0.61} \left(\frac{0.12Yield_{16}}{M_{DTstag}^{mg}}\right)^{0.54}$$

Other forms of ignition criterion using hot spot areal density and temperature**

$$(\rho R)_{HotSpot} T_{ion} > 0.3 \times 5 g/cm^2 keV$$

**Atzeni and Caruso, Nuovo Cimento 1984 Kemp, Meyer-ter-vehn and Atzeni, PRL 2001 *R. Betti et al, PRL 2015
A. Christopherson et al, PoP (2018 and 2019)
Lindl, PoP, 2018
Spears, PoP 2012 (ITFx)

Observations deviate from simulations with increasing convergence or decreasing

adiabat

Implosion predictions are challenging because of the multi-scale and multi-physics involved

Limited simulation predictability can be due to modeling errors, uncertainties in input to codes or engineering aspects not captured by codes

Illumination asymmetry

Outline

- Direct drive on OMEGA
- Improving implosion performance by improving models
 - 1D physics e.g. role of cross beam energy transfer and mitigation using laser bandwidth evidence
 from the NIF upgrade to ray-trace models in hydrodynamic simulations
 - multi-D physics Role of perturbations modeling and diagnosing nonuniformity
 - Postprocessing tools, new signatures identifying failure mechanisms
- Improving implosion performance using physics informed data-science models
- Scaling to Mega-Joule facilities

Cross beam energy transfer can significantly reduce the ablation pressure

shell thickness

ROCHESTER 1

Laser deposition models in rad-hydro codes have been improved to include the effect of CBET

As an example: introducing cross beam energy transfer models in hydrocodes

Detuning the wavelengths of the crossing beams can improve ablation pressure as

demonstrated on the NIF

NIF's wavelength detuning capability has been used to demonstrate mitigation of

CBET in proof-of-principle experiments

Outline

- Direct drive on OMEGA
- Improving implosion performance by improving models
 - 1D physics e.g. role of cross beam energy transfer and mitigation using laser bandwidth evidence
 from the NIF upgrade to ray-trace models in hydrodynamic simulations
 - multi-D physics Role of perturbations modeling and diagnosing nonuniformity
 - Postprocessing tools, new signatures identifying failure mechanisms
- Improving implosion performance using physics informed data-science models
- Scaling to Mega-Joule facilities

Laser speckle can reduce the areal density for high IFAR implosions

Density at end of laser pulse

Highly resolved 3D simulations are now possible to model the effect of laser imprint

Target at peak neutron production

Relative neutron yield (3-D over 1-D) = 0.812

Outline

- Direct drive on OMEGA
- Improving implosion performance by improving models
 - 1D physics e.g. role of cross beam energy transfer and mitigation using laser bandwidth evidence
 from the NIF upgrade to ray-trace models in hydrodynamic simulations
 - multi-D physics Role of perturbations modeling and diagnosing nonuniformity
 - Postprocessing tools, new signatures identifying failure mechanisms
- Improving implosion performance using physics informed data-science models
- · Scaling to Mega-Joule facilities

Hot spot flow, diagnosed by the Doppler shift in the DT neutron peak, can result in an inefficient conversion of the shell kinetic energy into hot spot energy

Three-dimensional neutron diagnostics provide information on the hot-spot velocity (first moment), apparent ion temperature (second moment), and the shell areal density (down-scatter ratio).

^{*} I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

^{**} F. Weilacher, P.B. Radha, and C. Forrest, Phys. Plasmas 25, 042704 (2018).

Implosions with large flows also indicate asymmetries in the measured width of the neutron spectrum (apparent ion temperature variations)

T_i versus projection along mode-1 direction

NtoF detectors

* Includes energy balance, beam pointing, timing, target offset

Outline

- Direct drive on OMEGA
- Improving implosion performance by improving models
 - 1D physics e.g. role of cross beam energy transfer and mitigation using laser bandwidth evidence
 from the NIF upgrade to ray-trace models in hydrodynamic simulations
 - multi-D physics Role of perturbations modeling and diagnosing nonuniformity
 - Postprocessing tools, new signatures identifying failure mechanisms
- Improving implosion performance using physics informed data-science models
- Scaling to Mega-Joule facilities

Yield degradation mechanisms have been quantified through a multi-variate

regression model with observed and simulated dependencies

Multi-variate regression techniques are being used in parallel to identify quantities

that determine implosion performance

The statistical model predicts yield accurately and is used to design higher performing implosions

The remaining scatter is due to shot-to-shot variations in laser delivery, target quality, and any other design-dependent physics that is not accounted for.

Hydrodynamic scaling requires a modest increase in yield and areal density

0.40

ρR (mg/cm²)

Outline

- Direct drive on OMEGA
- Improving implosion performance by improving models
 - 1D physics e.g. role of cross beam energy transfer and mitigation using laser bandwidth evidence
 from the NIF upgrade to ray-trace models in hydrodynamic simulations
 - multi-D physics Role of perturbations modeling and diagnosing nonuniformity
 - Postprocessing tools, new signatures identifying failure mechanisms
- Improving implosion performance using physics informed data-science models
- Scaling to Mega-Joule facilities

Many coronal processes influence laser energy deposition and electron transport to

the ablation surface

Summary/Conclusions

Progress in direct drive implosions is being made through feedback between experiments and codes, and physics-informed data science techniques

- Direct drive applications include yield, studies related to stockpile stewardship, nuclear astrophysics, studies
 of matter under extreme conditions etc.
- Several approaches in parallel are being pursued in parallel to improve performance in proof-of-principle DTlayered OMEGA implosions (kJ scale)
 - Surrogate implosions, targeted science experiments to guide design of cryogenic implosions and improve simulation predictability
 - Improved tools for postprocessing simulations to identify signatures and potential failure metrics
 - Data driven models incorporating failure metrics to improve performance
- Modern computing is permitting large scale simulations with improved models.

Coasting Phase

Maintaining ablation pressure till the implosion bang time is key to improving

compression

The improved compression by maintaining ablation pressure has been

demonstrated in OMEGA implosions

Measured proton spectrum

