How ignition and target gain > 1 was achieved in inertial fusion
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Recent NIF ICF experiments are an “existence proof” of laboratory
ignition and “target gain” (G, z+>1)

= No mystery physics obstacle stands in the way of ignition (explosive thermodynamic
instability) or gain (energy out > energy in)

= The theoretical prediction of the physics parameter regime (e.g. Lawson triple product)
where ignition was expected is consistent with our results

= Additional laser energy (at fixed power) was very beneficial

= Implosion physics was more sensitive to engineering control of the laser and targets
than originally thought

= So far, very high gain (high compression) target designs have not worked as expected.
All break-throughs over the past decade have used low gain designs

= Remarkable that we can now talk about burning plasmas, ignition, and scientific
breakeven in the past-tense!
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In order to get high fusion yields, we need to assemble the fusion
fuel into a configuration that can stop alpha’s in the fusion plasma
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Fusion reaction:
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70-80% a’s stopped in
“hotspot” increasing T

20-30% a’s ablate fuel
increasing hotspot mass

Conditions needed:
hotspot areal density (pR > 0.3 g/cm?)
peak central density (ppr > 100 g/cc)

pressure (Ppr > 400 Gbar)

helium-4 nuclei

T T—D+T ->n(14.1 MeV) + « (3.5 MeV)
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Indirect drive inertial confinement fusion (ICF) uses x-rays to
ablate and accelerate a capsule of fusion fuel to extreme velocity

Lasers deposit A bath of x-rays is The capsule Capsule Kinetic energy is
energy into created as the surface ablates at || accelerates inwards converted into
hohlraum hohlraum heats ~150 Mbar doing pdV work internal energy

“Implosion” “Stagnation”

Achieving the conditions for ignition demands precise control of design, laser, and target parameters
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Often conflated, the terms “burning plasma,” “ignition,” and
“gain” all mean something physically different

= Burning plasma*
- ICF: Self-heating energy exceeds external “pdV work” to heat and compress the DT
- MFE: Self-heating energy exceeds external heating of the DT

= Ignition (i.e. Lawson CriterionT)
- Self-heating power exceeds all DT plasma power losses
- Losses are radiative, electron heat conduction, negative pdV work
- Results in thermodynamic instability (explosive increase in T, Y, etc).

= Target Gain
- Fusion yield exceeds laser energy into target
- 1997 NAS committee used this as “ignition” in a report & the U.S. DOE adopted this
definition

L Li National Laborat @ i -t \A S
M O P i Betti, et al, PRL, 2015; tLawson, J.D., Proc. Phys. Soc., B, 1957 NS



o/
=Y
...W, /
=
S
w
=
O
B0
)
—
—
S
o
)
-
(&
=N
&
~

¥ 6

4

\L N
N\ :
ANA NS

o

LLNL-PRES-844193

& Lawrence Livermore National Laboratory



The NIF delivers delivers frequency trlpled (3w) Iaser
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Laser light is.converted;into a bath of x-rays that
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Inertial fusion sacrificesienergy for energy density,
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There are several energy gain metrics in ICF, all increased by
approximately 5000x over the past decade on the NIF
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It took a decade of work to tackle several key target physics
challenges that frustrated our progress

= |Instability control

= Symmetry control

= Sufficient energy coupling
= Target quality

= Ultra-high compression
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In indirect-drive, the hohlraum, ablator, and laser pulse
determine the ablation pressure that drives the implosion

N210808 Total
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implosion:

Key elements of ICF laser pulse:

Foot — controls stability and majority of fuel entropy
(adiabat, alf)

Peak Power — implosion velocity

Coast period - efficiency of KE conversion into DT internal
energy, via radius of peak velocity

Hohlraum and laser pulse-shape

/

Z+1

Ablator material that forms capsule
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2010-12: Plastic ablator “Low-foot” implosions were designed to
be high yield ( > 1 MJ), but underperformed for many reasons”
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Hydro-dynamic instability defeats density and temperature
gradients and is more challenging with higher compression

“Takabe” formula for linear 21.500 ns D. Clark et al.. Phvs
. Cla ., PNys.

Frowih e Pl 23, 056302 (2016
“Rayleigh-Taylor” (RT) asmas 23, ( )

Ya-rr~
acceleration (g) is destabilizing

(but how else to get high v;,,,?)

Numerous forms: e.g.
Bodner, Betti, Kilkenny,
Takabe, etc.

long density gradient scale help
high ablation velocity (v,;;) helps

Exponential perturbation growth: Lead to “high foot” implosion

~ef Ya-rrdt

wavelength, 1 = 27"
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2013-2015: High-foot implosions tested if better controlling
hydrodynamic instability would improve performance
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While the high foot implosions increased fusion yield by 10x and
had repeatable behavior, symmetry control was an issue

High-foot DT N131219 N140225 N141106 N140520 N141016 N150121 N150409
repeatability (N131219 repeat) | (N131219 repeat) (N140520 repeat, | (N140520 repeat) | (N140520 repeat)
tests bundle misfire)

350 TW & 1.6 MJ 390 TW & 1.8 MJ

X-ray emission
at 78-degree
view, 100x100
microns

Neutron
emission at 315-
degree view
(red=13-17
MeV, blue=6-12
MeV)

Yeotar (k)

9.83 9.14

Tpr(keV) 4.91+0.15 4.51+0.15 4.44+0.13 5.54+0.15 4.07+0.13 5.2140.11 5.5+0.15
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Series of high-foot experiments revealed the importance of
“coast-time” in maximizing mechanical power transfer

500, 300.0
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f
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t (ns) t (ns) 0 1 2 3
Coast time (ns)
Coast-time ~ duration between max compression and end of laser pulse
Radius of peak velocity, R,,,, minimized with short coast-time
Lawrence Livermore National Laboratory Hurricane, et al, PoP, 2017; Hurricane, et al, PoP, 2022
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2015-2018: Higher pressures achieved using high density carbon
ablators and low gas-fill hohlraums
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Symmetry control was improved with HDC ablators and low gas-
fill hohlraums, but control is still challenging, even today

N201101 N201122 N210207 N210220
(HYBRID-E) (1- (HYBRID-E) (I-Raum)

Fluence-
Compensated

Data Downscattered

Neutron Image

(FC-DSNI)
Synthetic
data from e
simulation

H Y D RA* Simulated Shell

Densaty (left)

Si m u Iation lon Temp (right)

e.g. Kritcher, et al., Nature Phys. 18, 251 (2022)

; 5 *Marinak, et al., PoP, 2003 \L 9%
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In ICF, it is essential to maximize the conversion of implosion
kinetic energy into hotspot internal energy

Experimental scaling of fusion yield
with hotspot energy, Y ~ E33
1.00E+17

Degradation of fusion yield with
asymmetry, Y ~ (1-nRKE)33
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Lawrence Livermore National Laboratory
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“HYBRID” strategy: [Hurricane, et al., PPCF 61, 014033 (2018); PoP 26, 052704 (2019)]
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Implosion symmetry control is important, because it wastes kinetic
energy, that could have heated the fusion fuel

Asymmetric implosion abstracted to pistons
pVY~const

|P2|<2um

Mode-1: 300 4
250 A
Vimp Vimp = ™
. 47
2 150 /
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100
50 4
Vcom y
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From conservation of energy and momentum: 0 100 200
0.0097 X Vimp? DSR/Ry:
2 2
1 mpistonsvimp Vceom Wasted KE =
P = 3 Vv 1- > “residual kinetic
/ vimp energy (RKE)”
minimum hot volume “wasted” KE

400

200
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100

0

100 200 300 400
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S

Lawrence Livermore National Laboratory
LLNL-PRES-844193

Hurricane, et al, PoP, 2020, Casey, et al, PRL, 2021; MacGowan, et al, HEDP, 2022
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Asymmetry wastes kinetic energy, even when there is no net center
of mass motion — geometry is a reflection of energy

—— fluence comp
— OpR

030 o HyDRA/O.66

0.25+

PSRy yy
pSRave

0.20+

A 0.15-

0.10
Key parameter for 3D asymmetry:

) 0.051
PSRwHM _ (JdA) .
POR 4y ( paR) (f p(SRdA) -0.2 0.0 0.2 0.4 0.6
(2) Legendre mode 2
PO/ ,5r

RKE
c(aif)KE

WHM = weighted harmonic mean’ of shell areal density

Lawrence Livermore National Laboratory *Hurricane, et al, PoP, 2022; Betti & Woo, PoP, 2021 NA'S#"" 23
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Significantly improved understanding of the levers controlling
implosion symmetry obtained during the 2015-2018 period

Legendre mode-2 (“P2”) scaling:

i 60
Callahan, et al., PoP, 2018;
Outer Inner E a T Ralph, et al, PoP, 2018 _
b “~ beam 5 :
eam S 20 +% ’ =
.E, HDC at 0.6 mg/cc
ac g %
O | d -y N\ 8 =
g & 20 i E{’E;%‘ e
b bble” 3 Hohlraum fill density: =
a f £ | Oamoec e
\ \‘\ ' -60 o mg]cc CH at 0.3 mg/cc
. \\\ 0.5 0.7 0.9 1.1 13 1.5 1.7 1.9

— Expa n d I ng l ' TN Epicket outer T  Teap

/ d blator : \) Aguter Pt Riont Rhont
Cross-beam energy transfer with low gas-fill:

AL = 0A AL = 1A

A. L. Kritcher, et al Phys. Rev. E 98, 053206 (2018); L. Pickworth, et al, PoP (2020)
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2018-2020: With a better understanding of the levers on capsule
and hohlraum control, we scaled up capsule radius, but ...

1.EH17 ¢ . 1.E+02 ¢
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We got surprised by numerous capsule defects when we increased capsule
radius ... problems identified (as shown) and eventually resolved

(Left) Confocal microscope image showing pits on the capsule surface. (Right) Tomographic

image showing an internal void.

-100
X () (Left) The five-micron fill tube used in the Feb. 7, 2021, experiment (an average human hair is
12
§ o about 70 microns in di ). (Right) The tv icron tube used on Aug. 8. The thinner tubes
8 o0e 2
. . R a4 are challenging to fabricate and extremely fragile, as shown by the bend that develops as the
Slide courtesy T. Braun, LLNL target fabrication s T ——
Time (rs)

Lawrence Livermore National Laborator - 0 id- \/ ) 26
rence Livermore Nation: y Braun, et al., Nuclear Fusion, 63, 2022; Zylstra, et al., Phys. Plasmas, 2020 (Hybrid-B) NS



Like asymmetry, more mixing (from capsule defects + hydro)
costs energy, putting more demands upon the driver

Energy and Yield amplification "cost" of Compressed
mix for N210808-like implosion DT fuel with hot Brems x-ray loss
50 central core 4 . Qs =3.1x107p,T, in =
45 72 -1 Re-radiation
= E “cost”

40 72 _12 T nergy “cos

35 72 = 1.4

30
o E o S pha-heating
§25 o = de

2 ( « = 8.2x10%p(ov) in == % Ss
20 2 , g-s 0

For ignition:
15 70.6
KEpix = KEpo_mixZ"™

Spitzer thermal

10
5 conduction
0 Q.~T"?/(pR?)
10.00 15.00 20.00 25.00 30.00
KE(kJ) Temperature
Lawrence Livermore National Laboratory N A‘Sﬁé 27
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After years of effort, we got more energy from the NIF laser (1.9 MJ - 2.05 MJ) and
had reasonable capsule quality, enabling the most recent success

1.E+19
1.E+18
s1.E+17
1.E+16

1.E+15

Total Neutron Yield

1.E+14

1.E+13

— 1374.053
YBest—fit = 6x10 TDD,keV

R?=0.9572

© Lowfoot
Highfoot
HDC
Bigfoot
e HyE1100
HyE 1050

® Iraum

01 2 3 456 7 8 9101112
DD Tion (keV)

Lawrence Livermore National L3
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Total Fusion Yield (kJ)

1.E+04

1.E+02

1.E+01

1.E+00 |

1.E-01

By addressing problems in steps and using a basic principles understanding, coupled with
design optimization and finesse, went from 1.5 kJ to 3.15 MJ fusion yield

Pressure
limited by
explosion-
phase
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HYBRID-E is the first ICF design to obtain a burning plasma?! and
ignition? in the laboratory

—
[
~

Diagnostic Window (one of three)

LEH washer

T (0,0) imager

(90,89)

/ imager

Cryogenic
DT fuel
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DT gas
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200

L N210808 Total

300

00: /

Fill-tube

v T 1.3 T T T M T
L Peak Power :z::mg ]
| Laser Power (TW) explosiony
3% sock Trad(ev) -
launched \ ]
N
2" shock Late-time” § !
i launched . I
[ 1stshock y x-ray drive '7”I ]
L launched \ 1
1
/ !
Coast time :
duration i 7
I -
]
- \ 1 4
Picket =~ M Y
5 Bang 10
Foot t(ns) time

Key elements:

+ Up to 20% larger radius capsule
than previous HDC ablator designs

* Reduced LEH size, for better x-ray
confinement3, with symmetry
control via CBET*/pointing

 Lower laser peak power, but an
extended duration of peak power in
order to reduce “coast time”
duration®

« All resulting in increased hotspot
energy and pressure

2Abu-Shawareb, et al (Indirect Drive ICF Collaboration), PRL, 2021; Kritcher, et al, PRE, 2021; Zylstra, et al, PRE, 2021

Lawrence Livermore National Laboratory
LLNL-PRES-844193

1Zylstra, et al., Nature, (2022); Kritcher, et al., Nature Phys. (2022); 3Ralph, et al. ’"Hohlraum
Scans Project,” APS-DPP (2021); “Kritcher, et al., PRE (2018); *Hurricane, et al. PoP, (2017)

NOYSE 2

Notions!



8% thicker ablator (m,.,), with +8% more laser energy, and
improved symmetry pushed the 1.37 MJ result to 3.15 M)

Time integrated neutron imaging

o N221204 <1011
9
6
100 8
N 17 ™
z 0 § g
2 43 A
N O 3 s 3
3 © <
.50 4
50 . 4
0
) 2
y [um] X [um] dii =
X m
1.37 MJ y [um] 315mg X el

Neutron Imaging System; Vologev, et al., RSI, (2014)

Lawrence Livermore National Laboratory Y S 30
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Increasing laser energy and capsule thickness by +8%,while
maintaining symmetry control, obtained G,,,.; > 1 Dec. 5, 2022

Lawson Metric Space

70

Delivered Laser Pulse

500+ N220919 N221204
N221204 60 12MJ 3.15 MJ
N210808
100- >0 \
50 e
£ 40 N210808
Power(TW) % 30 \N211107 1.37 MJ
10 2 Lawson
ignition
5 20 ® boundary
10 k%)@@@
1 ; ; -
0 2 4 6 8 10 0
t(ns) 0123456178 9101112

DD T,,, (keV)

& Lavience Livermore Natona Laborary. Story of success by “incremental” evolutionary improvements NS4 3



Outstanding problem: materials appear stiffer than models expected
and higher compression is needed for increased burn efficiency

30

25 A

c
'% CR/
7)) Vimpos/ )
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=
)
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©
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0

0_
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10 A

Figure from: Landen, et al., PoP, 28, 042705 (2021)

e CH
oC

C 3-2-Shock
® Be

1 2 3 4
In-flight adiabat

5

Expected compressibility based on entropy

Fraction of DT fuel burned:

¢ ~ pruel
pruel +7

Fraley, et al., Phys. Fluids, 17, 1974

Lawrence Livermore National Laboratory
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Remarkable that we can now talk about burning plasmas, ignition,
and scientific breakeven (G, > 1) in the past-tense!

= No mystery physics obstacle stands in the way of ignition (explosive thermodynamic
instability) or gain (energy out > energy in)

= The theoretical prediction of the physics parameter regime (e.g. Lawson triple product)
where ignition was expected consistent with our results

= Additional laser energy (at fixed power) was very beneficial (“low coast time”)

= Implosion physics was more sensitive to engineering control of the laser and targets
than originally thought

= So far, very high gain (high compression) target designs have not worked as expected.
All break-throughs over the past decade have used low gain designs

Lawrence Livermore National Laboratory Y S 33
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