The X2 Nested Channel Hall Effect Thruster: an Inner Channel Simulation

Horatiu C. Dragnea, Iain D. Boyd, Scott J. Hall and Alec D. Gallimore, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI

Background

- Hall Effect Thrusters (HETs) have a rich history of over 60 years [1]
- Nested channel HETs were first developed at the University of Michigan in the Plasmadynamics and Electric Propulsion Laboratory (PEPL):
 - 2 channel, 10kW class X2 by Liang [1]
 - 3 channel, 100kW class X3 by Florenz [2]

Motivation

- Performance gains were observed in multiple channel operation [1]

<table>
<thead>
<tr>
<th>Channel</th>
<th>Thrust (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>255±10</td>
</tr>
<tr>
<td>X3</td>
<td>750±20</td>
</tr>
</tbody>
</table>

- Full characterization of the thruster channels
- Hard to measure quantities inside channel
- Investigation of channel interaction
- Future input for a plume simulation
- Design feedback

Simulation Setup

- Parameters:
 - Xe propellant
 - total number of neutrals: 113,300
 - total number of ions: 568,800
 - time step: 50 ns
 - simulation time: 4 ms
 - propellant flow rate: 7 mg/s
 - discharge voltage: 200 V
 - wall temperature: 812 K
 - computation time: 18 hrs

- The 2D axisymmetric hybrid-PIC code HPhall [3] is used in the current study.

Results

- Axial ion velocity
- Centerline neutral number density comparison
- Electron temperature
- Double ion number density
- Single ion number density
- Electron number density

Thrust Values (kN)

<table>
<thead>
<tr>
<th>Source</th>
<th>Measured</th>
<th>Simulation in vacuum</th>
<th>Simulation with 1.5 x 10⁻¹⁷ Torr</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>255±10</td>
<td>255±10</td>
<td>255±10</td>
</tr>
</tbody>
</table>

Conclusions

- Facility backpressure does not influence the inner channel
- Thrust values are in good agreement with measurement
- Electron temperature values confirm ionization assumption (no triples)

Future Work

- Near term:
 - Obtain raw data for electron temperature and plasma potential measurements, and error bars
 - Obtain B field map from measurements and compare to MagNet output
 - Obtain B field from Infolytica MagNet for other thruster operating conditions
- Medium term:
 - Update code:
 - Mesh reading routine
 - Electron model
 - Prepare dual channel simulation
- Long term:
 - Move on to X3 simulations
 - Provide design feedback

References

Acknowledgments

This work was supported by a NASA Space Technology Research Fellowship, grant number NNX13AL51H.