DIELECTRIC BARRIER DISCHARGES IN HUMID AIR*

Amanda M. Lietza), Mark J. Kushnerb)

a)Department of Nuclear Engineering and Radiological Sciences
University of Michigan, Ann Arbor, MI 48109, USA
lietz@umich.edu

b)Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109, USA
mjkush@umich.edu
http://uigelz.eecs.umich.edu

MIPSE Graduate Student Symposium
Ann Arbor, MI
8 October 2014

* Work was supported by the DOE Office of Fusion Energy Science and National Science Foundation
AGENDA

• Atmospheric Pressure Dielectric Barrier Discharges
• Model
• Base Case
• Effect of Flow Rate on ROS/RNS
• Effect of Humidity on ROS/RNS
• Conclusions
ATMOSPHERIC PLASMAS

- Plasma-Medicine
 - Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced in plasma discharges
 - ROS/RNS signal cells, optimal dose is difficult to determine [1]
 - Sanitize sensitive wounds without tissue damage [2]
 - Reduce the size of cancerous tumors. [3]
 - Greater certainty in the fundamental processes required before it could be used on humans – modelling is essential

- Environmental Remediation
 - Air and surface sterilization, control of air pollutants, CO$_2$ sequestration have shown promising results. [4]
 - Air discharges used on pilot scale for the removal of NO$_x$ and SO$_2$ from incinerator exhaust. [5]
 - Many challenges with scaling up, modeling is valuable.
ATMOSPHERIC PLASMAS

- Examples of atmospheric pressure plasmas devices
- This type of DBD discharges below may be used to directly treat wounds or tumors

MG Kong [et al]

University of Michigan
Institute for Plasma Science & Engr.
MODEL: GLOBAL-KIN

- Global model (0-D) - assumes all densities are uniform throughout plasma volume.
- Electron temperature:

\[\frac{\partial \left(\frac{3}{2} n_e k_b T_e \right)}{\partial t} = \vec{j} \cdot \vec{E} + n_e \sum_i \Delta \varepsilon_i k_i N_i - \sum_l \frac{3}{2} n_e v_{mi} \left(\frac{2m_e}{M_i} \right) k_b (T_e - T_i) \]

- Species densities:

\[\frac{dn_i}{dt} = \sum_j \left(a_{ij}^{(L)} a_{ij}^{(R)} \right) k_j n_{ij}^{a_{ij}^{(R)}} \]

\(a_{ij}^{(L)} \) and \(a_{ij}^{(R)} \) LHS and RHS stoichiometric coefficients
• Power deposition approximates a DBD
 • 5 ns pulse
 • 1 kHz pulse repetition freq.
• Flow gas (humid air):
 • \(\text{N}_2/\text{O}_2/\text{H}_2\text{O} = 78/21/1 \)
 • \(\text{CO}_2 \) 3.5 x 10^{-2} %
 • \(\text{CH}_4 \) 4 x 10^{-4} %
• Air flow direction, and electrode configuration need not be specified for the global model.
• Flow produces a "residence time" for gas in plasma.
BASE CASE CONDITIONS

- 500 sccm humid air
- 25% relative humidity
- 1 kHz pulse repetition rate
- Initial and inlet gas are the same composition – all species flow out.
- $T_e \approx 4.5$ eV during pulse
- T_{gas} increases during pulses due to joule heating – decreases between pulses due to conduction, flow.

- T_e, T_{gas} at 1 kHz.
REACTIVE OXYGEN SPECIES (ROS)

- Electron impact dissociation / attachment of O_2, H_2O during pulse produces O, OH, H, O_2^-

- Reactions between pulses:
 - $\text{O + O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}$
 - $\text{H + O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$
 - $\text{OH + OH + O}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$

- Gas flow (residence time, $\tau = 9.6$ ms) depletes products.

Graph:

- O_3
- O_2^*
- HO_2
- H_2O_2
- OH

Axes:

- Vertical axis: Density [cm$^{-3}$]
- Horizontal axis: Time [s]
REACTIVE NITROGEN SPECIES (RNS)

- Terminal RNS include nitrogen oxides (N_xO_y) and acids (HNO_x)

 \[
 \text{N} + \text{OH} \rightarrow \text{NO} + \text{H} \\
 \text{O} + \text{NO} + \text{N}_2 \rightarrow \text{NO}_2 + \text{N} \\
 \text{O} + \text{NO}_2 + \text{M} \rightarrow \text{NO}_3 + \text{M} \\
 \text{NO} + \text{OH} + \text{M} \rightarrow \text{HNO}_2 + \text{M} \\
 \text{OH} + \text{NO}_2 + \text{N}_2 \rightarrow \text{HNO}_3 + \text{N}_2
 \]

- RNS stabilize after about 0.02 s (20 pulses), which is about 2.1τ
EFFECT OF FLOW RATE - RNS

- Residence time τ decreases with increasing flow rate.
- RNS increase with smaller flow rate as longer τ enables more formation reactions.
- N_2O_5 is an exception:
 $\text{NO}_2 + \text{NO}_3 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M}$
 $\text{NO}_2^- + \text{N}_2\text{O}_5 \rightarrow \text{NO}_3^- + \text{NO}_2 + \text{NO}_2$
- N_2O_5 is consumed by a NO_2^- at low flow, limited by NO_3 at high flow.
In absence of hydrocarbons, ROS are fairly stable and accumulate in discharge.

ROS do react with RNS:

\[
\text{HO}_2 + \text{NO} + \text{M} \rightarrow \text{HNO}_3 + \text{M}
\]

\[
\text{HO}_2 + \text{NO}_2 \rightarrow \text{HNO}_2 + \text{O}_2
\]

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2
\]

Shorter residence times produce less RNS and so less depletion of ROS.

Control of ROS/RNS by varying flow rate
HUMIDITY – RNS PRODUCTION

- Production of HNO$_2$ and HNO$_3$ increase with increasing humidity.

 \[
 \text{NO} + \text{OH} + \text{M} \rightarrow \text{HNO}_2 + \text{M}
 \]

 \[
 \text{OH} + \text{NO}_2 + \text{N}_2 \rightarrow \text{HNO}_3 + \text{N}_2
 \]

- Humidity above 10% does not effect RNS generation

- Water impurities below 1 ppb do not effect RNS generation
HUMIDITY – ROS PRODUCTION

- H_2O_2, HO_2, and OH increase with humidity – origins are traced to electron impact dissociation of H_2O.
- Humidity above 10% does not affect ROS – likely due to finite energy deposition.
- Impurities less than 1 ppb not important
CONCLUDING REMARKS

- Increased flow rates (smaller residence times) decrease RNS densities, except for N_2O_5.
- Increasing humidity increases production of HNO_2, HNO_3, H_2O_2, HO_2, and OH – electron impact dissociation of H_2O.
- Water impurities in dry air below 1 ppb, have a negligible effect on ROS and RNS.
- Increasing humidity above 10% has a negligible effect on ROS and RNS.

Future Work:
- Expand reaction mechanism and validate by comparison to experiment.
- Improve functionality of Global_Kin to include interaction with a liquid.
- Analyze devices with a broad range of flow rates, from surface micro-discharges to DBDs and plasma jets.
REFERENCES

