A 5 kW class Hall
undergone extensive ground testing, but
there are currently no corresponding thruster
simulations available in the literature.

Extrapolating upon available limited thruster
geometric properties and magnetic field
profiles, a preliminary thruster model is
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created using HPHall.

HPHall is a hybrid-PIC code that models highly
mobile electrons as a quasi-1D fluid and
heavier species using a particle-in-cell (PIC)

method. [2]

Using radial magnetic field data taken at the thruster discharge channel centerline,
inner diameter, and outer diameter, a magnetic field configuration complying to the

Simulation Preprocessing: Magnetic Field

effect thruster has
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Introduction

Fig. 1: Xenon Hall Thruster [1]

following assumptions is generated:

 The magnetic field is purely solenoidal (V - B = 0) . Therefore, a magnetic
potential function, o, exists, and Laplace’s equation must be satisfied in the

Magnetic field variations due to plasma currents and changing electric
fields are small compared to the field produced by the electromagnet. [2]
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Simulating a 5 kW Class Hall Thruster

Simulation Setup

Parameters:
Thruster run-time: 1ms start up, 4ms on with plasma physics

lon & neutral particle step size: 5 x 1028 s
Electron step size: 1 x 10! s

Background pressure and discharge voltage: experimental inputs

20+ cases were simulated, mainly altering the electron mobility coefficients from one case to the next. The

Results

results shown here are those for which the highest average thrust was achieved.
Avg Thrust: 75.61%; Avg Discharge Current: 92.7% achieved; Avg lon Current: 110.0% achieved
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Once o is known, the magnetic field can be calculated. In this case, a field is created to
satisfy available experimental data. However, because the exact magnet locations are
not known, the simulated magnetic field topology will differ somewhat from the
experimental field.
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Fig. 3: Electron Number Density (m-3)
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Fig. 6: Axial lon Velocity at Discharge Channel Centerline (m/s)
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Fig. 7: Plasma Potential and Electron Temperature at Discharge
Channel Centerline

Discussion

e The electron temperature contour exhibits unexpected

curvature outside of the channel, indicating that the
domain may not be large enough to capture the flow field
properties.

* The plasma potential decreases to zero in the near field

thruster plume, which is not realistic.

 Since the axial ion velocity is still increasing at the edge

of the domain, it is likely that the acceleration region has
not been fully simulated.

e The magnetic field lines extend past the thruster walls

(Fig. 2), indicating that the upper magnet location
requires modification.

Conclusion

Qualitatively, simulation results agree with experimentally
observed behavior.

Macroscopic quantities including thrust, discharge current,
and ion current do not yet agree with expected measured
properties.

Discrepancies in the model may be due to the following:

* Results are sensitive to the magnetic field
topology. [3] The simulation uses a
mathematically possible magnetic field
topology that has not been compared to the
entire experimental field.

e The simulation domain may not be large
enough to capture thrust occurring outside the
thruster channel.
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