Janez Krek!, Guy Parsey!, John Verboncoeur

KGMf — Model class and Boltzmann Equation Solver

1

MICHIGAN STATE 'Michigan State University ({krek,parseygu,johnv}@msu.edu)

Motivation

The Kinetic Global Model framework (KGMf), a Python-based framework developed at Michigan State
University, offers users great flexibility in defining various system parameters, that are defined as system

variable dependent functions or as a constants - including the electron energy distribution function (EEDF).
The KGMf was used to simulate microwave assisted jet flame [1]

metastable laser reaction kinetics [3].

multi-phase chemistry [2|, and rare gas

)

Model class

Model class is “wrapper” class around current functionality of KGMTf - making the use of the KGMTf simpler
for new users and keeping the same functionality (and flexibility) for advanced users. Currently supported
ways of use Model class are:

= using KGMf provided script (runkey file):
Running simulation for 10,000 steps from ¢ = 0 to t = 10 *s using reaction file RF.txt and simulation file
SF.txt. Plot with species densities will be displayed on the screen.
/home/nice-user/codes/kgm-framework/runkey model.py -rf RF.txt -sf SF.txt -run O le-4 1000

= user created running script:

import sys

KGMf root_dir = " /home/nice—user /kgm—framework"'

add path to KFM src directory if it is not already in system path
sys.path.append (KGMf_ root_dir) if KGMf root_dir not in sys.path else None

relative to being inside of the kgm—framework directory
from src.KGM_user.model import Model

define model with reaction and sitmulation data input files
m = Model ("RF. txt", "SIF.txt")

define simulation running time (start, end) and number of steps

m. simulationTime (0.0, le—4, 10000)
m. run () # run the sitmulation
m. show () # show prepared plots (densities)

Boltzmann equation solver

KGMT1 enables the use of arbitrary defined EEDFE
- defined at the beginning of a simulation either

Densities and Temperatures with period 1.0e-03 sec using reALLO input

1 o 1lel8 I}‘l=1.[:flI | | I}'fl=2.[:flI
as a constant value or as a system variable de- Lol — A+ ||| — At |
pendent function, e.g. f = f(e,a, 3) or at least 5 o8 : i::j; | — i::j; -
electron energy f(e). This offers certain degree of £ °°
Hexibility in describing a system for simulation, E Z:
but in some cases the assumed EEDFE does not 0ol R
offer adequate description of the system (plots 0.2
on the right displays results from two different 8 S—
assumed EEDFs: left for Maxwell and right for i |
Druyvesteyn distribution). To fully describe the = 5| N
system, the EEDF (or better, reaction rates) have E ;‘ ‘
to be computed in each simulation step and that)
could be achieved using: . L
US+UU 2&104 ilde—ll:lf-’l Eie—lﬂfl EE—IEM 1le-03 Oe+00 2&104 4&104 ﬁ«e—lﬂf-’l Ee—lﬂf-‘l le-03

« Boltzmann equation solver
« Monte-Carlo method

Integration time [s] Integration time [s]

f .

Ve | I(t) L R

C
O— TN
Y |

Updated flowchart

Regardless of the method
used, simulation time will
be much longer as currently
used optimizations will not be
beneficial (parameter space of

 Enh

time-dependent EEDE would -~ s 0 I A

be too large to benefit from /

pre-computed splines). /
With implemented DBoltzmann i,

KGM framework

g “——{ input files |

, L 4 ﬂ
...---—‘ prepare input data }7

reacs
sims |5
gather

. prepare generic ODE system
(PrepGenODESystem)

o
._pl-_-_-'___-.-.—.
F

solver (presently we are plan of

generate reaction rates
(GenerateReactionRates)

using BOLOS [4] because of the

Sy | |
- .__'_._FI— —

language similarity with KGMI),

prepared (vectorized)

reaction rates }‘ _{ prepate specific ODE system

(PrepSpecificODESystem)

there are two major changes in

_____ | TR
- >

=
-_'-'-—l———l"

KGMf flowchart (as indicated on T
flowchart): |

finalize

(FinalizePrepODEInput)

preparation of ODE system FI

new integration loop with
- : ~ updating EEDF

™ .
___________ . \

» No pre-computing of reaction

oy
init_val g }‘ f o \

aux_val

rates

« densities, Te and rates are
computed in each simulation
step

1

\ !

. integrate ODE system I
(IntegrateODESystem) | |

' \ !

get values for n, Te, K for step -1

(-

— L
| present results |‘ Iterate and evaluate Boltzmann equation
“ “ untll conditions are met

return values for n, Te, K for step |

Proposed method of computing reaction rates does not limit the implementation of used method - the com-
putation of self-consistent system could be done using Boltzmann equation solver (single-, two- or multi-term

approximation [5, 6, 7|). Selection of the method is (almost) arbitrary and easily upgradable in future.

Future work

Future work on field of better user friendliness of KGMf, following will be pursued:

« enable run of “batch runs” using Model class

= enable saving/loading intermediate configuration /st

ate of the system from user Model class

= add flexibility in forming custom output, either as images and/or raw values for (external) post-processing

On field of updating core functionality of KGMI, upc

ates will be done in following areas:

= add, test and verify Boltzmann equation solver (Bo

= check and add other methods (e.g. Monte Carlo) fo
self-consistent system

os like)

r computing reaction rates computation to provide

= optimizing Boltzmann equation solver to utilize multi-core/multi-thread

. Luque, https://pypi.python.org/pypi/bolos (2004)
. Petrov, R. Winkler, J. Phys. D: Appl. Phys. 30 (1997) 53-66

~ 0 O > O O &

. Parsey, Y. Guglu, J. Verboncoeur and A. Christlieb, ICOPS, doi: 10.1109/PLASMA.2013.6634762 (2013)
. Parsey, Y. Grgcli, J. Verboncoeur and A. Christlieb, ICOPS, doi: 10.1109/PLASMA.2014.7012415 (2014)
. Parsey, J. Verboncoeur, A. Christlieb and Y. Giiglii, ICOPS, doi: 10.1109/PLASMA.2015.7179543 (2015)

. L. Braglia, M. Diligenti, J. Wilhelm, R. Winkler, Il Nuovo Cimento D, February 1990, Volume 12, Issue 2, pp 257277
. Winkler, J. Wilhelm, Il Nuovo Cimento D, July 1990, Volume 12, Issue 7, pp 10051014

