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Motivation

The Kinetic Global Model framework (KGMf), a Python-based framework developed at Michigan State
University, offers users great flexibility in defining various system parameters, that are defined as system

variable dependent functions or as a constants - including the electron energy distribution function (EEDF).
The KGMf was used to simulate microwave assisted jet flame [1]

metastable laser reaction kinetics [3].

multi-phase chemistry [2|, and rare gas

)

Model class

Model class is “wrapper” class around current functionality of KGMTf - making the use of the KGMTf simpler
for new users and keeping the same functionality (and flexibility) for advanced users. Currently supported
ways of use Model class are:

= using KGMf provided script (runkey file):
Running simulation for 10,000 steps from ¢ = 0 to t = 10 *s using reaction file RF.txt and simulation file
SF.txt. Plot with species densities will be displayed on the screen.
/home/nice-user/codes/kgm-framework/runkey model.py -rf RF.txt -sf SF.txt -run O le-4 1000

= user created running script:

import sys

KGMf root_dir = " /home/nice—user /kgm—framework"'

# add path to KFM src directory if it is not already in system path
sys.path.append (KGMf_ root_dir) if KGMf root_dir not in sys.path else None

# relative to being inside of the kgm—framework directory
from src.KGM_user.model import Model

# define model with reaction and sitmulation data input files
m = Model ("RF. txt", "SIF.txt")

# define simulation running time (start, end) and number of steps

m. simulationTime (0.0, le—4, 10000)
m. run () # run the sitmulation
m. show () # show prepared plots (densities)

Boltzmann equation solver

KGMT1 enables the use of arbitrary defined EEDFE
- defined at the beginning of a simulation either
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Proposed method of computing reaction rates does not limit the implementation of used method - the com-
putation of self-consistent system could be done using Boltzmann equation solver (single-, two- or multi-term

approximation [5, 6, 7|). Selection of the method is (almost) arbitrary and easily upgradable in future.

Future work

Future work on field of better user friendliness of KGMf, following will be pursued:

« enable run of “batch runs” using Model class

= enable saving/loading intermediate configuration /st

ate of the system from user Model class

= add flexibility in forming custom output, either as images and/or raw values for (external) post-processing

On field of updating core functionality of KGMI, upc

ates will be done in following areas:

= add, test and verify Boltzmann equation solver (Bo

= check and add other methods (e.g. Monte Carlo) fo
self-consistent system

os like)

r computing reaction rates computation to provide

= optimizing Boltzmann equation solver to utilize multi-core/multi-thread

. Luque, https://pypi.python.org/pypi/bolos (2004)
. Petrov, R. Winkler, J. Phys. D: Appl. Phys. 30 (1997) 53-66

~ 0 O > O O &

. Parsey, Y. Guglu, J. Verboncoeur and A. Christlieb, ICOPS, doi: 10.1109/PLASMA.2013.6634762 (2013)
. Parsey, Y. Grgcli, J. Verboncoeur and A. Christlieb, ICOPS, doi: 10.1109/PLASMA.2014.7012415 (2014)
. Parsey, J. Verboncoeur, A. Christlieb and Y. Giiglii, ICOPS, doi: 10.1109/PLASMA.2015.7179543 (2015)

. L. Braglia, M. Diligenti, J. Wilhelm, R. Winkler, Il Nuovo Cimento D, February 1990, Volume 12, Issue 2, pp 257277
. Winkler, J. Wilhelm, Il Nuovo Cimento D, July 1990, Volume 12, Issue 7, pp 10051014



