
KGMf – Model class and Boltzmann Equation Solver
Janez Krek1, Guy Parsey1, John Verboncoeur1

1Michigan State University ({krek,parseygu,johnv}@msu.edu)

Motivation

The Kinetic Global Model framework (KGMf), a Python-based framework developed at Michigan State
University, offers users great flexibility in defining various system parameters, that are defined as system
variable dependent functions or as a constants - including the electron energy distribution function (EEDF).
The KGMf was used to simulate microwave assisted jet flame [1], multi-phase chemistry [2], and rare gas
metastable laser reaction kinetics [3].

Model class

Model class is “wrapper” class around current functionality of KGMf - making the use of the KGMf simpler
for new users and keeping the same functionality (and flexibility) for advanced users. Currently supported
ways of use Model class are:
•using KGMf provided script (runkey file):
Running simulation for 10,000 steps from t = 0 to t = 10−4s using reaction file RF.txt and simulation file
SF.txt. Plot with species densities will be displayed on the screen.
/home/nice-user/codes/kgm-framework/runkey_model.py -rf RF.txt -sf SF.txt -run 0 1e-4 1000

•user created running script:
import sys
KGMf_root_dir = " /home/ nice −user /kgm−framework "
add path to KFM src d i r e c t o r y i f i t i s not a l r eady in system path
sys . path . append (KGMf_root_dir) i f KGMf_root_dir not in sys . path e l s e None

r e l a t i v e to be ing i n s i d e o f the kgm−framework d i r e c t o r y
from s r c . KGM_user . model import Model
d e f i n e model wi th r e a c t i o n and s imu la t i on data input f i l e s
m = Model ("RF. txt " , " SIF . txt ")
d e f i n e s imu la t i on running time (s t a r t , end) and number o f s t e p s
m. simulationTime (0 . 0 , 1e −4, 10000)
m. run () # run the s imu la t i on
m. show () # show prepared p l o t s (d e n s i t i e s)

Boltzmann equation solver

KGMf enables the use of arbitrary defined EEDF
- defined at the beginning of a simulation either
as a constant value or as a system variable de-
pendent function, e.g. f = f (ε, α, β) or at least
electron energy f (ε). This offers certain degree of
flexibility in describing a system for simulation,
but in some cases the assumed EEDF does not
offer adequate description of the system (plots
on the right displays results from two different
assumed EEDFs: left for Maxwell and right for
Druyvesteyn distribution). To fully describe the
system, the EEDF (or better, reaction rates) have
to be computed in each simulation step and that
could be achieved using:
•Boltzmann equation solver
•Monte-Carlo method

Updated flowchart

Regardless of the method
used, simulation time will
be much longer as currently
used optimizations will not be
beneficial (parameter space of
time-dependent EEDF would
be too large to benefit from
pre-computed splines).
With implemented Boltzmann
solver (presently we are plan of
using BOLOS [4] because of the
language similarity with KGMf),
there are two major changes in
KGMf flowchart (as indicated on
flowchart):
•no pre-computing of reaction
rates

•densities, Te and rates are
computed in each simulation
step

Proposed method of computing reaction rates does not limit the implementation of used method - the com-
putation of self-consistent system could be done using Boltzmann equation solver (single-, two- or multi-term
approximation [5, 6, 7]). Selection of the method is (almost) arbitrary and easily upgradable in future.

Future work

Future work on field of better user friendliness of KGMf, following will be pursued:
• enable run of “batch runs” using Model class
• enable saving/loading intermediate configuration/state of the system from user Model class
• add flexibility in forming custom output, either as images and/or raw values for (external) post-processing
On field of updating core functionality of KGMf, updates will be done in following areas:
• add, test and verify Boltzmann equation solver (Bolos like)
• check and add other methods (e.g. Monte Carlo) for computing reaction rates computation to provide
self-consistent system

• optimizing Boltzmann equation solver to utilize multi-core/multi-thread

[1] G. Parsey, Y. Güçlü, J. Verboncoeur and A. Christlieb, ICOPS, doi: 10.1109/PLASMA.2013.6634762 (2013)
[2] G. Parsey, Y. Güçlü, J. Verboncoeur and A. Christlieb, ICOPS, doi: 10.1109/PLASMA.2014.7012415 (2014)
[3] G. Parsey, J. Verboncoeur, A. Christlieb and Y. Güçlü, ICOPS, doi: 10.1109/PLASMA.2015.7179543 (2015)
[4] A. Luque, https://pypi.python.org/pypi/bolos (2004)
[5] G. Petrov, R. Winkler, J. Phys. D: Appl. Phys. 30 (1997) 53–66
[6] G. L. Braglia, M. Diligenti, J. Wilhelm, R. Winkler, Il Nuovo Cimento D, February 1990, Volume 12, Issue 2, pp 257–277
[7] R. Winkler, J. Wilhelm, Il Nuovo Cimento D, July 1990, Volume 12, Issue 7, pp 1005–1014

