Accelerating Low-temperature Processing of Printed Nanoinks Using Machine Learning and Bayesian Optimization of Non-thermal Plasma Jet Sintering

University of Notre Dame

Motivation
- Rapid processing of emerging nanomaterials on flexible and thermosensitive substrates for applications in wearable electronics and in situ sensors
- Non-thermal plasma jets enable simple and low-temperature sintering of printed thin films on delicate substrates
- Machine learning Bayesian optimization (BO) approaches optimize multi-dimensional experimental problems in a low-cost and efficient way

References

Optimization Workflow & Results

Step 1. Determine plasma jet operating envelope ($Q_{\text{max}}, U_{\text{max}}, f_{\text{max}}$)

Step 2. Maximize SEI (Q, U, f)

Step 3. Maximize σ and minimize T_{max} ($d, n, t_{\text{on}}, t_{\text{off}}$)

Objectives:
- maximize electrical conductivity (σ) of ITO thin films
- minimize the peak substrate temperature (T_{max})

• Decision variables: $Q, U, f, d, n, t_{\text{on}}, t_{\text{off}}$
• BO increases SEI by 2.4x
• Pareto front indicates the best trade-off between σ and T_{max}

Summary
• Bayesian optimization method optimized 7-dimensional variable space to maximize the electrical conductivity of ITO films and control the substrate temperature under a relatively low value
• Non-thermal plasma jet sintering of ITO produced a conductivity of 7.6 S m$^{-1}$ with a substrate temperature below 47 °C in 1 hour
• Achieved 81.4% of furnace sintering with a temperature 250 °C lower and 3x faster

Acknowledgements
This work was supported by the United States Department of Energy under Award Number DE-EE0009103.