The Giant Planets as Unique Laboratories for Space Plasma Processes



Ali H. Sulaiman

Credit: NASA

CLaSP/MIPSE Thursday, 14 Sep 2023 Ann Arbor, MI

## Auroras of the giant planets



Earth-based telescopes

Spacecraft

## Why do we care about the auroras of the giant planets?

1000

1bar) / km

(abov

Altitude 400

600 é

200

#### Magnetospheres and Atmospheres

The aurora provides the essential context to understand the dynamics of magnetospheres



#### "Energy Crisis"

- Jupiter's upper atmosphere is  $\sim 700$  K or  $\sim 4.5 \times$  hotter than predicted by solar radiation models
- Saturn, Uranus, and Neptune are  $\sim 2.5 \times$ ,  $\sim 5.8 \times$ , and  $\sim 4.5 \times$  hotter than ٠ predicted
- The upper atmosphere is predominantly heated by the  $\bullet$ redistribution of auroral energy



#### Juno's Unique View of Jupiter's Aurora





4

### The Magnetosphere of Jupiter





### Electron Acceleration Mechanism (Peaked)

# Electric Potentials (theorized as cause of peaked distributions via electrostatic acceleration)

- Quasi-static potential structures accelerate auroral particles parallel to the magnetic field. Each electron gains the same amount of energy  $q\Phi$
- These potential structures develop when there are not enough charge carriers (i.e., low electron density)
- Strong electric fields accelerate electrons to compensate for their scarcity, in order to balance ∇ × B imposed by the magnetosphere

Recent statistics have shown that broadband distributions are much more common than monoenergetic distributions on main auroral field lines

Cannot be explained by a quasi-static energization mechanism



Electrostatic (inverted V) and time-dependent (broadband) acceleration over Jupiter's upward auroral zone (Zone-I) [*Mauk et al.*, 2020]

# A Brief Introduction to Plasma Waves

- Due to the presence of long-range forces, various types of waves can exist in a plasma that have no counterpart in ordinary gases or dielectric media
  - In the absence of collisions, this is by virtue of electric and magnetic fields, as well as various charged particle species supported by a plasma
- One of the most fundamental plasma waves is the electron plasma frequency,  $\omega_{pe}$  (the Langmuir wave)
  - When electrons are displaced relative to the ions, an electric field is set up to restore charge neutrality
  - The inertia means the response of the system is harmonic
  - The electric field is therefore oscillating, with a natural frequency,  $\omega_{pe}$  that is proportional to the square root of electron number density,  $\sqrt{n_e}$
  - Therefore, *n<sub>e</sub>* can be inferred by simply measuring the frequency of the oscillating electric field
  - The properties of a given plasma wave is encoded in its dispersion relation. This requires that a relationship between frequency, wavelength, and direction must be satisfied for a wave to exist. For example, a propagating Langmuir wave has a dispersion relation given by  $\omega^2 = \omega_p^2 + 3k^2 v_{tb}^2$



# Basic Principles of Wave-Particle Interaction (1)

- The collisionless nature of space plasmas would imply that there is virtually no dissipation
- Wave-particle interactions introduce finite dissipation in a collisionless plasma
- They are thought to be play an important role in the dynamics of the radiation belts, auroral acceleration regions, magnetopause boundary layers, shock heating, etc.
- Wave-particle interaction becomes possible when a wave frequency felt by a particle is Doppler shifted by the velocity of the particle. Resonance occurs when the Doppler-shifted frequency is at the cyclotron frequency, or its harmonics, i.e.,  $\omega k_{\parallel}v_{\parallel} = n\omega_{c}$ .
  - A special case is Landau resonance, where n = 0.



Maxwellian plasma. Wave will always suffer damping. Tsurutani and Lakhina, 1997, *Reviews of Geophysics* 



Beam-plasma system. Resonance possible.

Ali Sulaiman

# Basic Principles of Wave-Particle Interaction (2)

• Another special case worth noting is cyclotron resonance, where  $n = \pm 1$ 

Normal cyclotron resonance (n = +1) occurs when an ion/electron interacts with a left/righthanded wave, i.e., the particle gyrates in the same sense as the wave's oscillating electric field.



Anomalous cyclotron resonance (n = -1) occurs when an ion/electron interactions with a right/left-handed wave, i.e., the particle gyrates in the opposite sense as the wave's oscillating electric field.



Tsurutani and Lakhina, 1997, Reviews of Geophysics

• Distortions in particle distribution functions are unstable to plasma waves. Plasma waves act to smear out the distortions. This could be via heating (spreading out in velocity space), accelerating, and/or pitch angle scattering (reducing anisotropy).

#### Cassini's and Juno's plasma wave instruments



Gurnett et al. (2004), Space Sci. Rev. Gurnett et al. (2005), Science

Kurth et al. (2017b), Geophys. Res. Lett.

## Definition: Jupiter's Auroral Zones

- The various auroral zones of Jupiter were first explicitly defined from energetic electron spectra (Mauk et al., 2020)
  - Diffuse aurora:
    - Most equatorward and broadest in latitude
    - Electron intensities greater outside the loss cone (trapped) than inside the loss cone
    - Electron intensities within the loss cone are predominantly downward (precipitating)
  - Zone-I
    - Intermediate and narrow in latitude
    - Brightest in UV
    - Electron intensities greatest in the downward loss cone
  - Zone-II
    - Poleward and narrow in latitude
    - Bright in UV (by contrast with "black" aurora at Earth and Saturn)
    - Electron intensities comparable in both upward and downward loss cones

#### General Plasma Properties (low altitude)

$$|\mathbf{B}| \sim O(10^{5}) \text{ nT}$$

$$n_{e} \sim O(10^{-3} - 10^{-2}) \text{ cm}^{-3}$$

$$T_{e} \sim O(10^{3} - 10^{4}) \text{ eV}$$

$$f_{ce} \sim O(10^{6}) \text{ Hz and } f_{ci} \sim O(10^{3}) \text{ Hz}$$

$$f_{pe} \sim O(10^{3} - 10^{4}) \text{ Hz}$$

$$\lambda_{e} \sim O(1 - 10) \text{ km}$$

$$v_{A} \rightarrow c$$



False color UV image of Jupiter's southern aurora

## Electron Acceleration Mechanisms (Broadband)

- Broadband energization calls upon a time-dependent/stochastic mechanism
- Broadband acceleration of electrons requires that the parallel electric field vary over the time it takes the electrons to pass through the acceleration region

#### 1. Alfvén waves

- Alfvén waves develop a  $E_{\parallel}$  when electron mass is accounted for, which serves to accelerate electrons
- Jupiter's magnetosphere is full of disturbances that propagate in the form of Alfvén waves and these travel along magnetic field lines to higher latitudes where they can accelerate electrons

#### 2. Whistler-mode waves

- Whistler-mode waves grow and then undergo damping as they accelerate electrons
- Whistler-mode waves are commonly observed in auroral regions of planetary magnetospheres



Propagation and dissipation of Alfvén waves in Jupiter's magnetosphere [*Saur et al.*, 2003; 2018]



Growth and damping of whistler-mode waves in Jupiter's auroral zones [*Elliott et al.*, 2018]

#### Density depletions above the aurora



Ordinary (O) mode waves have a low-frequency cutoff at the electron plasma frequency,  $f_{pe}$  [Hz] = 8980 $\sqrt{n_e}$  [cm<sup>-3</sup>]



#### Density depletions above the aurora



The whistler mode cannot propagate above  $f_{pe}$ , leaving Alfvén waves as the leading candidate for broadband acceleration

However, strong observational evidence for Alfvénic acceleration remains premature





Sulaiman et al., 2022

Fields and Particles in Zone I



Ali Sulaiman

#### Electron acceleration: More on Alfvén Waves

Development of  $E_{\parallel}$  due to the electron inertial effect. For a plane wave

$$E_{\parallel}/E_{\perp} = \frac{k_{\parallel}k_{\perp}\lambda_e^2}{1+k_{\perp}^2\lambda_e^2}$$

This parallel electric field increases with  $k_{\perp}\lambda_e$ 

• Low  $n_e$  increases  $\lambda_e (= c/2\pi f_{pe})$ 

- $k_{\perp}$  increases due to plasma turbulence cascading energy from larger to smaller scales (e.g., *Saur et al.*, 2003; 2018)
- Phase mixing due to gradients in the Alfvén speed can lead to smaller wavelengths thus increasing  $k_{\perp}$  (Lysak et al., 2021)

The conditions are ripe for the development of a large parallel electric field. The wave can interact with electrons resonantly or non-resonantly.

Saur et al. (2018) estimated an energization of 0.7 MeV over 1 R<sub>I</sub>

The lack of appreciable Alfvén wave power in the low-altitude  $(0.6 - 1.6 \text{ R}_{\text{J}})$  auroral zones supports the possibility Landau damping at higher altitudes. This is reinforced by the presence of Alfvénic fluctuations reported at much higher altitudes (> 10 R<sub>J</sub>) that map to the main emissions (*Lorch et al.*, 2022)





## Ion acceleration in Zone-I

Persistent ionospheric H<sup>+</sup> accelerated over Zone-I at a rate of 1-5 kg s<sup>-1</sup> [*Szalay et al.*, 2021]

- H<sup>+</sup> energy distributions are peaked and pitch angles are highly collimated along the magnetic field away from Jupiter
- This indicates electrostatic acceleration by electric potentials above Zone-I
- In order to be admitted into potential structures in higher altitudes, ionospheric ions must be energized to above Jupiter's gravitation binding energy
- Presence of upward propagating H<sup>+</sup> and H<sub>3</sub><sup>+</sup> cyclotron waves (ICWs) suggest transverse heating of ionospheric ions which develop a parallel velocity via the action of mirror forces (conservation of the first adiabatic invariant)
- Electrostatic acceleration found to be suppressed when electron broadband acceleration occurs [*Mauk et al.*, 2020]







Ionospheric H<sup>+</sup> accelerated away from Jupiter along auroral field lines. The peak H<sup>+</sup> outflow maps to Zone I [*Szalay et al.*, 2021]

### How are auroral density cavities maintained?



#### Density depletions above Zone II

Phase speed of a transverse mode in a cold unmagnetized plasma

 $v_p = \frac{\omega}{k} = \frac{c}{\sqrt{1 - \frac{\omega_{pe}^2}{\omega^2}}}$ 

Phase speed can be related to E and B fluctuations using Fourier's representation of Faraday's law

$$i\mathbf{k} \times \widetilde{\mathbf{E}} = -(-i\omega)\widetilde{\mathbf{B}}$$
  
 $v_P = \frac{\omega}{k} = \frac{\widetilde{E}_z}{\widetilde{B}_y}$ 





Sulaiman et al., 2023

### Jupiter's aurora: The present



Sulaiman et al., 2022

#### Shock waves in the Universe

#### Shock waves



#### CME/IPS



#### Planets & Comets

#### Heliosphere





Supernovae

Heliocentric Distance

#### Collisionless Shock Waves (Basic Principles)



#### The solar wind conditions near the Gas Giants



Sulaiman et al. (2017b), Springer International Publishing

Ali Sulaiman

## $M_A$ Parameter Space at Saturn



### $M_A$ Parameter Space at Saturn (cont'd)



Sulaiman et al. (2015), Phys. Rev. Lett.



Masters et al. (2013), Nature Physics

#### Ion Reflection



Zank et al., 1996 Credit: ESA

#### Ion Reflection



#### Timescale of Specular Reflection

 $(2\cos^2\theta_{Bn} - 1)\frac{2\pi}{\tau}t^* + 2\sin^2\theta_{Bn}\sin\left(\frac{2\pi}{\tau}t^*\right) = 0$ 

- $t^*$  is the time of first re-encounter with the shock after specular reflection
- Solving numerically, for t\*



Thank you!

# CMA Diagram

