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Introduction Results: Single Step Results: Multiple Steps

U An Intermediate step enables a stronger shock In the target
material than without the step until reflected waves weaken It.

U Optimal shock strengthening occurs when the step density Is the
geometric mean of the densities of the left and right materials.

U Detalls of many planetary interior compositions remain unknown.

U Simulations predict superionic ice in Jovian planets, but accessing
these conditions experimentally is challenging [1-3].

U Objective: develop a method for extending experimental
access to extreme conditions found in planetary interiors.

U Incorporating multiple steps can further strengthen the shock.
U Exponential density profiles optimize shock strengthening.
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Figure 1: The hypothesized composition of the planet Neptune with superionic ice [4].
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Figure 2: The thermodynamic path (left) and experimental schematic (right) of a diamond anvil cell. 5:: Qs:: t Number of Steps

Figure 10: Hyades simulation showing wave diagram
colored with pressure for three intermediate steps.

Figure 11: Shock strengthening vs number of steps
from theory and Hyades simulations.

Method of Analysis

Particle Velocity Particle Velocity

U The method of characteristics (MoC) reduces PDEs to ODEs along
specific paths, enabling solutions to 1D nonlinear hydrodynamics.
U The Riemann problem describes a system after diaphragm release.
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Figure 5: The Hugoniots and isentropes that fix the states for increasing (left) and decreasing (right) density.
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Figure 3: The MoC solution for a wall-reflected rarefaction (left) and a solution to the Riemann problem (right).

Figure 6: Shock strengthening for a given interface
and intermediate step density.

Figure 7: Shock strengthening from theory (lines) and
Hyades simulations (open, ideal gas; filled, tabular).
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