

A theoretical approach for shock strengthening in high-energydensity laser compression experiments

Michael Wadas¹, Griffin Cearley¹, Jon Eggert², Marius Millot², and Eric Johnsen¹ ¹Mechanical Engineering, Univ. of Michigan, Ann Arbor, MI. ²Lawrence Livermore Nat. Lab, Livermore, CA.

Introduction

- \succ Details of many planetary interior compositions remain unknown.
- \succ Simulations predict superionic ice in Jovian planets, but accessing
- these conditions experimentally is challenging [1-3]. > Objective: develop a method for extending experimental access to extreme conditions found in planetary interiors.

Figure 1: The hypothesized composition of the planet Neptune with superionic ice [4].

Figure 2: The thermodynamic path (left) and experimental schematic (right) of a diamond anvil cell.

Method of Analysis

- \succ The method of characteristics (MoC) reduces PDEs to ODEs along specific paths, enabling solutions to 1D nonlinear hydrodynamics.
- \succ The Riemann problem describes a system after diaphragm release.
- > The analysis leverages the MoC with a boundary condition from the Riemann problem. A calorically perfect gas is assumed.

Figure 3: The MoC solution for a wall-reflected rarefaction (left) and a solution to the Riemann problem (right).

Results: Single Step

- \succ An intermediate step enables a stronger shock in the target material than without the step until reflected waves weaken it. \succ Optimal shock strengthening occurs when the step density is the
- geometric mean of the densities of the left and right materials.

Figure 6: Shock strengthening for a given interface and intermediate step density.

Figure 7: Shock strengthening from theory (lines) and Hyades simulations (open, ideal gas; filled, tabular).

Results: Multiple Steps

1.6 $M_{R_{\rm f}}$ M_R 20 Number of Steps

Figure 8: Shock strengthening vs number of steps distributed exponentially (blue) and linearly (yellow).

Figure 10: Hyades simulation showing wave diagram colored with pressure for three intermediate steps.

Conclusions and Acknowledgement

[1] P. Demontis et al., Phys. Rev. Lett. 60, 1988. [2] M. Benoit et al., Phys. Rev. Lett. 76, 1996. [3] C. Cavazzoni et al., Science **283**, 1999. [4] M. Millot et al., Nat. Phys. **14**, 2018.

This work is supported by the Lawrence Livermore National Laboratory (LLNL) under subcontract B632749 and was performed under the auspices of the U.S. Department of Energy (DOE) by the LLNL under Contract No. DE-AC52-07NA27344 with partial support provided by LDRD 19-ERD-031. Furthermore, this work was performed as part of the U.S. DOE National Nuclear Security Administration Stewardship Science Graduate Fellowship Program under grant DE-NA0003960.

\succ Incorporating multiple steps can further strengthen the shock. \succ Exponential density profiles optimize shock strengthening.

Figure 9: Shock strengthening vs overall interface density ratio and incident shock Mach number.

> A semianalytical method was developed to explore shock strengthening in anvil-based laser compression experiments. \succ Density steps can be used to locally strengthen shock waves. \succ For one step, a density $\rho_1 = \sqrt{\rho_L \rho_R}$ maximizes the shock strength. \succ Exponential density profiles yield optimal shock strengthening, enabling access to new experimental states of matter.

Figure 11: Shock strengthening vs number of steps from theory and Hyades simulations.