High Energy, Relativistic Intensity Laser Channeling and Direct Laser Acceleration of Electrons from an Underdense Plasma*

H. Tang^a, A. McKelvey^a, P. T. Campbell^a, B. K. Russell^a, Y. Ma^a, A. V. Arefiev^b,

G. J. Williams ^c, H. Chen ^c, F. Albert ^c, J. Shaw ^c, P. M. Nilson ^c and L. Willingale ^a

(a) University of Michigan (tanghm@umich.edu)
(b) UC San Diego
(c) Lawrence Livermore National Laboratory

Direct Laser Acceleration (DLA) of electrons by a relativistically intense laser pulse is a dynamic and complex process. We perform experiments using the OMEGA EP laser and 2D particle-in-cell simulations to study the acceleration of electron beams from underdense plasma using high-energy, picosecond-duration laser pulses. Gas-jet targets were used to control and change the target density and the focusing conditions are altered by apodizing the beam near-field from having a square profile to a round profile. Proton radiography observes the evolution of the electromagnetic fields within the channel formed and magnetic spectrometers measure the electron spectra. 2-D Particle-in-cell simulations investigate how the plasma density and laser parameters, like energy and focusing conditions, affect the interaction and DLA mechanism to help optimize the experiment configuration.

* This work is support by the Department of Energy / NNSA under Award Number DE-NA0003944.