Probabilistic evaluation of closure models for the Hall thruster anomalous collision frequency

Problem: Current Hall thruster simulations are not predictive due to incomplete understanding of electron transport physics.

Hall thrusters
Annular $\vec{E} \times \vec{B}$ discharge used to accelerate ions for spacecraft propulsion

Anomalous electron transport
Electrons diffuse across magnetic field lines much faster than classical theory predicts, so simulations cannot match experiment without hand-tuning. Model as extra “anomalous collision frequency” (ν_{AN}) in electron momentum equation

\[\nu_{AN} = \frac{1}{K} \cdot \text{coefficients: } \{K\} \]

Ohm's law:
\[(\nu_e + \nu_{AN})^\frac{\mu_e}{q} = qn_e\vec{E} + \nabla P_e - \vec{J}_e \times \vec{B} \]

Question: How can we develop and test models of anomalous transport while accounting for model uncertainty?

Approach: Use validated simulations as surrogate data to calibrate and test models of anomalous transport

Application: Evaluate multiple algebraic models to determine if any are predictive and extensible

Discussion: Examine reasons for low performance

Axial properties for data-driven model

Conclusions:
- Algebraic models tend to under-predict performance when calibrated on steady-state data
- Breathing-like oscillations consistently reproduced
- Bayesian techniques can quantify model uncertainty

Nomenclature:
- ν_{AN}: Anomalous collision freq.
- m_e: Electron mass
- n_e: Electron number density
- P_e: Electron pressure
- ν_e: Electron drift speed
- ν_{AN}: Anomalous collision freq.
- ω_c: Electron cyclotron freq.
- β: Magnetic field
- E: Electric field
- \vec{J}_e: Electron current density
- T_e: Electron temp.
- ν_c: Classical electron collision freq.
- u_i: Ion velocity
- c_a: Ion acoustic speed

References: