Extreme Plasma Astrophysics: a Shining New Frontier

Dmitri Uzdensky
University of Colorado Boulder

Theoretical Plasma Astrophysics at Colorado:
G. Werner, M. Begelman, A. Chen, F. Bacchini, J. Dexter, N. Scepi
grad students: (John Mehlhaff), Kai Wong, Lia Hankla, Omar French

Work supported by NSF, NASA, DOE; INCITE, XSEDE

MIPSE Plasma Seminar, October 12, 2022
OUTLINE

• Introduction:
 – The Plasma Universe
 – What is *Plasma Astrophysics*?
 – What is *Extreme Plasma Astrophysics*?

• Examples of Recent Radiative-PIC Numerical Studies of Extreme Plasma Processes:
 – Radiative Relativistic Magnetic Reconnection;
 – Radiative Relativistic Kinetic Turbulence.

• Future Outlook:
 – What can laser experiments do?

• Summary
Most ordinary baryonic visible matter in the Universe is plasma.
The Shining Universe

- Universe consists of 68% dark energy, 27% dark matter and only 5% of ordinary baryonic matter.
- But baryonic matter makes 100% of the light we see!
High-Energy Universe

- 6 orders of magnitude in photon energy from CMB (1 meV), through IR, visible, UV, to X-rays (keV).
- High-energy astronomy: γ-rays alone cover > 6 orders: MeV – TeV
- X-ray and γ-radiation is often nonthermal and variable (flaring)
- High-energy universe is very rich and diverse.
Recent multi-messenger Discoveries:

- GWs from merging BHs and NSs (LIGO)
- PeV neutrinos from BH jets (IceCube)
- Ultra-High Energy (10^{20} eV) Cosmic Rays
- Black Hole shadow in M87 (EHT)
- Fast Radio Bursts (VLA, Arecibo)

Physical understanding lags behind observations.

Understanding EM & particle signals requires Plasma Physics.
High-Energy Particle Acceleration and Emission in Astrophysical Plasmas

• Astrophysical plasmas *shine*.
• Extremely ultra-relativistic particles pervade the Universe and emit high-energy gamma-rays.
• Produced by powerful cosmic explosions (supernovae, Gamma-Ray Bursts) or by relativistic objects: Neutron Stars, Black Holes and their relativistic outflows: jets, winds.
• Radiative cooling time \ll travel time from central engine \rightarrow *in-situ particle acceleration*.
Dissipation/Acceleration Mechanisms

In Astrophysics particles are accelerated by complex nonlinear collective plasma processes.

- **Bulk Kinetic**
 - longitudinal: shocks
 - transverse: shear (KH) instability

- **Magnetic (Poynting flux)**
 - current sheets: Magnetic reconnection

Available Free Energy

Singular Structure

Turbulence

D. Uzdensky

10/12/2022
Space and Astro plasmas are complex, multi-component systems

- Magnetic field
- Thermal gas/plasma
- Nonthermal particles (CRs)
- Turbulence/waves
- Large-scale bulk motions (rotation/jets)
- Radiation

These components are often in energy equipartition:
e.g., ISM in our Galaxy: \(U_{\text{gas}} \sim U_{\text{magn}} \sim U_{\text{turb}} \sim U_{\text{CR}} \sim U_{\text{rad}} \)
Components and Processes

Studying these energy exchange processes is the realm of Plasma Astrophysics.
• Plasma physics is mature.
• Extensive knowledge base of collective plasma processes built over decades of theoretical, computational, experimental research.

We can apply this rich traditional plasma knowledge to high-energy astrophysical plasmas!

OR CAN WE ??

Not so fast!

... would be warranted if these plasmas were governed by the same physics, same equations....

But this is not always the case!
Traditional & Extreme Plasma Physics

Traditional Plasmas

- Electrons and ions
- Non-relativistic
- Non-radiating

Applications:
- Most lab plasmas
- Solar corona
- Earth’s magnetosphere

New: Extreme Plasmas

“Exotic”* Physics:
- e^-e^+ pairs (+ ions), photons
- Relativistic (Special & General)
- Radiation (cooling, drag, pressure)
- QED effects (e.g., pair creation)

*These effects may be exotic for traditional plasma physicists, but not for high-energy astrophysicists.

Applications:
Neutron Stars (NSs) & Black Holes (BH):
- Magnetospheres of pulsars, magnetars
- NS and BH accretion disks, jets
- Cosmic blasts (SNe, GRB)
- NS-NS mergers
- Early Universe
and soon...
- Laser-plasma lab experiments!

Based on 19th Century Physics!

D. Uzdensky

Based on 20th Century Physics!

10/12/2022
This calls for development of **Extreme Plasma Astrophysics:** systematic inclusion of these “exotic” physical effects into kinetic plasma framework.

--- intellectually exciting **Frontier of Fundamental Physics**
Problems of (Extreme) Plasma Astrophysics

Local:
Collective Plasma Processes
- Waves
- Instabilities
- Reconnection
- Turbulence
- Shocks
- Pair Cascades

Global:
Astrophysical Systems
- Pulsar Magnetosphere
- Magnetar Magnetosphere
- Merging NSs
- Accreting BH Magnetosphere

QUESTIONS:
- How is energy dissipated?
- How is it partitioned btw. ens & ions?
- How does nonthermal particle acceleration work?
- What is the spectrum of turbulence?
- What coherent field, flow structures form?
- What light is produced?
- How many \(e^+e^-\) pairs are created?

Something in between:
Mesoscopic Problems
Tools of Extreme Plasma Astrophysics

• Analytical Theory

• Massively-parallel simulations:
Radiative GRMHD and Radiative Particle-in-Cell (PIC) (incl. QED-PIC):
 – relativistic radiative PIC codes: Zeltron, Tristan-MP, Aperture, OSIRIS, Runko, GRPIC
 – include radiation reaction on emitting particles
 – e^+e^- pair or electron-ion plasma + photons
 – Hundreds of billions simulated particles
 – $(10^4)^2$-cell (2D) or $(10^3)^3$-cell (3D) grids
 – Run on hundreds of thousands cores

• HED Laboratory Plasma Experiments:
 – Laser Plasma (NIF, LLE, SLAC, Michigan, Rutherford)
 – Pulsed Power (Imperial, MIT, Sandia)
Radiative Plasma Astrophysics

• **Radiation (= Radiation Reaction)** force on emitting particles is important in many high-energy *astro* systems:

\[
m_e c \frac{d u^\mu}{d s} = -\frac{e}{c} F_{\mu \nu} u^\nu + g^\mu
\]

Lorentz 4-force

- **4-velocity**
- **Electromagn. field tensor**
- **Relativistic interval**

For relativistic particles:

\[g^\mu \approx -\frac{P_{rad}}{c^2} u^\mu \]

Two main (classical) radiation mechanisms:

• **Synchrotron**: in magnetic energy density \(U = B^2 / 8\pi \)

\[P_{rad} = 2 \sigma_T c U \gamma^2 \sin^2 \varphi \]

• **Inverse-Compton (IC) scattering** (Thomson limit): ambient bath of soft photons of energy density \(U \).

\[P_{rad} = \frac{4}{3} \sigma_T c U \gamma^2 \]

• **Fluid-level manifestations**:

- Radiative cooling;
- Radiation pressure;
- Radiative drag on bulk plasma flows;
- Compton-drag resistivity.

• Radiation is often our only *observational probe* into astro systems.

How does, e.g., a reconnection layer look like, literally?
What are the prompt radiative signatures (spectra, lightcurves) *seen by an outside observer?*
Examples of Recent Radiative-PIC Simulations of Radiative Relativistic Collective Plasma Processes

New radiative-PIC codes and powerful computers enable ab initio simulation studies of extreme astrophysical collective plasma processes.

Magnetic Reconnection (Greg Werner)

Kinetic Plasma Turbulence (Vladimir Zhdankin)
Radiative Relativistic Magnetic Reconnection

image credit: G. Werner & J. Mehlhaff
Introduction: Magnetic Reconnection

- Magnetic reconnection is a rapid rearrangement of magnetic field topology, breaking ideal-MHD.

- Reconnection results in a violent release of magnetic energy and its conversion to:
 - electron and ion heating
 - bulk flow kinetic energy
 - non-thermal particle acceleration
 - radiation
Traditional Magnetic Reconnection in the Solar System

[Images of magnetic reconnection in the solar system, including solar flares and Earth's magnetic field.] (adapted from Forbes & Acton, 1996)
Radiative Reconnection in Astrophysics

(Uzdensky 2016 review)

- Pulsar magnetospheres, winds, PWNe
- Black hole accretion disks & coronae
- Active galactic nuclei (AGN/ blazar) jets*
 powered by supermassive BHs
 (producing CRs, PeV neutrinos, TeV γ-ray flares)
- Gamma-Ray Bursts (GRBs)
 exploding massive stars
 or NS-NS mergers* - gravitational wave sources
- Magnetar magnetospheres
 (ultra-magnetized neutron stars: γ-ray flares)

* Multi-messenger astrophysics
PIC Simulations of Relativistic Magnetic Reconnection with inverse-Compton (IC\textsubscript{y}) Radiative Cooling

Werner, Philippov, Uzdensk\texty{y} 2019

Relevant to coronae of black-hole accretion disks

Also: Sironi & Beloborodov (2020); Ortu\textn{o}-Macias & Nalewajko (2019); Mehlhaff et al. (2020-21)
PIC Simulations of Radiative Reconnection with ICy cooling

(Werner, Philippov, & Uzdensky 2019)

Radiative-PIC (Zeltron) sims of relativistic pair-plasma reconnection with inverse-Compton radiation cooling.

Weak cooling (large $\gamma_{\text{rad}}/\sigma$): usual hard power law
Strong cooling (small $\gamma_{\text{rad}}/\sigma$): variable steep power law
Intermediate (medium $\gamma_{\text{rad}}/\sigma$): both power laws
Kinetic Beaming of Particles and Radiation

(Mehlhaff, Werner, Uzdensky, Begelman 2020)

- Relativistic reconnection focuses accelerated particles into narrow beams/fans (Uzdensky et al. 2011, Cerutti et al. 2012)

- Focusing is energy-dependent (higher energy -> stronger collimation):
 “kinetic beaming”

- But: beams diverge and isotropize over time...unless radiaction cools them first...

low-energy particles isotropize before radiating away their energy

high-energy particles radiate away their energy before isotropizing

Angular distributions of emitted photons
QED-Radiative-Reconnection-Powered Pair Creation in NS & BH Magnetospheres

Rel. PIC Simulations of Reconnection with Synchrotron Radiation and Pair Creation

Schoeffler, Grismayer, Uzdensky, Fonseca, Silva ‘19
- 1-photon in strong-B pair production (OSIRIS)

Hakobyan, Philippov, Spitkovsky ‘19
- 2-photon ($\gamma\gamma$) pair production (TRISTAN)

New QED Module for Zeltron (developed by J. Mehlhaff):
- discrete photon macroparticles
- Klein-Nishina QED effects
- ($\gamma\gamma$) pair production

D. Uzdensky
10/12/2022
Relativistic Radiative Turbulence

Astrophysical applications:
PWN, hot BH accretion flows, AGN/blazar jets, GRBs.
3D PIC Simulations of Relativistic Kinetic Turbulence with External Inverse-Compton Radiative Cooling

(Zhdankin, Werner, Uzdensky, Begelman 2020)

(Also: Comisso & Sironi; Nattila & Beloborodov)

D. Uzdensky 10/12/2022
Steady-State Particle Distribution

(Zhdankin, Werner, Uzdensky, Begelman 2020)

Quasi-thermal particle distribution
Power-law tail quenched by cooling
Turbulent Kinetic Beaming

Low-energy particles

\[\langle \sigma \rangle = 3.4 \]

High-energy particles

“Kinetic” beams

Intermittent high-energy beams – Kinetic Beaming!
Similar to magnetic reconnection
(c.f., Cerutti et al. 2012, 2013; Mehlhaff et al. 2020)
Prospects for Experimental Studies

But how do we know that our simulations are correct?

What can lab experiments do?

Powerful, high-intensity lasers such as ZEUS give us the Experimental Branch of Extreme Plasma Physics.

- In Astrophysics, high-energy particles are accelerated by *collective plasma processes* (shocks, reconnection, turbulence) in extreme environments near BHs and NSs.
- Collective plasma processes (and particle acceleration) are already studied in laser-plasma expts, yielding valuable insight.
- **PIC simulations + theory**: efficient high-energy relativistic nonthermal particle acceleration requires relativistic regime:

\[u \sim V_A \sim c \iff \sigma = \frac{B_0^2}{4\pi n_b mc^2} > 1 \]

Previous moderate-intensity \((10^{14}-10^{15} \text{ W/cm}^2)\) laser expts (NIF, Omega, Hercules, Vulcan…) cannot achieve relativistic conditions, are not optimal for studying relativistic plasma dynamics.
Prospects for Experimental Studies

What can lab experiments do?

- PIC simulations + Theory: efficient high-energy relativistic nonthermal particle acceleration requires relativistic regime:

\[u \sim V_A \sim c \iff \sigma = \frac{B_0^2}{4\pi n_b mc^2} > 1 \]

- It is difficult to make bulk ions relativistic but it’s possible to make relativistic electron component!

Possible routes:

- Current: Relativistic electron-only reconnection (slow ions) with high-intensity \((10^{18} \text{ W/cm}^2)\) lasers (e.g., Omega-EP)

- Near Term: ZEUS (3 PW) \(\rightarrow\) relativistic pair plasmas

- Long Term: Next-generation multi-PW kJ-class lasers will create macroscopic \((L \gtrsim 10^2 d_e, \lambda_D, \rho_L)\) relativistic pair plasma, providing an experimental platform for studying relativistic collective processes.

MP3 Multi-Petawatt Physics Prioritization Workshop

April 2022, Sorbonne Univ., Paris, France

Stay tuned for MP3 Workshop Report!
SUMMARY

• Understanding extreme astrophysical systems --- neutron stars & black holes -- demands *Extreme Plasma Astrophysics*: kinetic plasma physics with nontraditional, “exotic” physics:
 – special and general relativity;
 – pair plasmas;
 – radiation;
 – pair creation;
 – QED effects in strong magnetic fields.

• Conquering this frontier is now possible, theoretically and computationally: we have developed 1st-principles plasma codes incorporating these effects.

• Rapid progress in laser and pulsed-power technology may soon enable laboratory exploration.

The Future of Extreme Plasma Astrophysics is bright!

But we do need bright young people!