Safe Learning-based Predictive Control of Low Temperature Plasmas using Deep Neural Networks and Gaussian Processes

Ali Mesbah

Department of Chemical and Biomolecular Engineering
University of California, Berkeley
Low Temperature Plasmas (LTPs)
Processing of complex surfaces and interfaces

Plasma Etching Process

Surface Coating

Surface Functionalization

Biomaterials Processing

Water droplets on polyimide film

Not treated Plasma treated

Complex plasma-surface interactions:
• Hard-to-model dynamics across multiple time- and length-scales
• Time-varying surface characteristics
• Lack of real-time diagnostics for surface properties

Grand challenge: Reproducible and precise control of plasma-surface interaction mechanisms

https://www.asbindustries.com/thermal-spray-coatings
http://www.igs.titech.ac.jp/iper/english/iper2/6/detail_44.html
Why Advanced Feedback Control for LTPs?

Current practice: Operating protocols for LTP sources devised offline

Why go beyond a single operating protocol?

- **Counter disturbances to reproducible plasma operation**
 - Small changes in plasma, surface, or environment can alter fluxes to surface
 - Surface characteristics can vary from point to point and change over time

- **Track plasma-induced surface effects to regulate plasma-surface interactions**
 - Change plasma parameters to optimize delivery of fluxes to surface in real-time

Vision

- Controlled environments for studying plasma effects
- Safe and effective LTP devices for point-of-use applications
- Automated and robotic control for LTP processing of (bio)materials (e.g., using an array of LTP discharges for “large-scale” materials processing)
Model Predictive Control (MPC)
An optimization-based feedback control strategy

Objectives Model Constraints

Optimizer

Control input, u

System

Measurements, y

Receding-horizon control introduces feedback

Do

min $J(\text{Plan}, x_k)$

Do

Plan

S.t.

$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k)$

Do

Plan

$h(\mathbf{x}_k, \mathbf{u}_k) \leq 0$

objective

nonlinear model

constraints
MPC Applications

Applications over a wide range of length- and time-scales

<table>
<thead>
<tr>
<th>Application</th>
<th>Time-Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded systems</td>
<td>ns</td>
</tr>
<tr>
<td>Traction control</td>
<td>μs</td>
</tr>
<tr>
<td>Chemical processes</td>
<td>seconds</td>
</tr>
<tr>
<td>Train scheduling</td>
<td>minutes</td>
</tr>
<tr>
<td></td>
<td>hours</td>
</tr>
<tr>
<td></td>
<td>days</td>
</tr>
<tr>
<td></td>
<td>weeks</td>
</tr>
<tr>
<td>Energy systems</td>
<td></td>
</tr>
<tr>
<td>Smart buildings</td>
<td></td>
</tr>
<tr>
<td>Tissue engineering</td>
<td></td>
</tr>
<tr>
<td>Production planning</td>
<td></td>
</tr>
</tbody>
</table>
MPC for Feedback Control of LTP Processing of Complex Surfaces

Key challenges in control of LTP applications

- **Handle hard-to-model and time-varying plasma-induced surface effects:**
 - Predictive models may not be available, thus there is a need for model learning “on the fly”
 - How to explore and exploit the system behavior simultaneously?

- **Handle system uncertainties, imperative in safety-critical and high-performance applications:**
 - Uncertainties arise from disturbances from the environment and model imperfections due to the complex nature of plasma and surface dynamics
 - How to model and incorporate uncertainty into control?

- **Handle fast system dynamics and thus high measurement sampling rates:**
 - There is a need for real-time diagnostics and fast control algorithms
 - How to achieve fast control computations under computational resource limitations?

Leverage stochastic optimal control theory and machine learning to address these challenges towards safe learning-based predictive control for LTPs
Safe Learning-based MPC
Mathematical representation of system dynamics

- A nominal model is augmented with a function that is learned in real-time to capture unmodeled phenomena using online data:
 - The nominal model describes our prior knowledge and can be a high-fidelity model or a data-driven model
 - Gaussian process regression is an effective approach for learning the unknown dynamics

\[
x_{k+1} = f(x_k, u_k) + B_d \left(g(x_k, u_k) + v_k \right)
\]
Safe Learning-based MPC

Gaussian processes are non-parametric models and quantify uncertainty of predictions

\[y_j = B_d^\top (x_{j+1} - f(x_j, u_j)) = g(x_j, u_j) + v_j \]

Calculate mismatch term over history \(M \) and store as a new dataset

\[\mathcal{D} = \{ \mathbf{y} = [y_1, \ldots, y_M]^\top, \mathbf{z} = [z_1, \ldots, z_M]^\top \} \]

Use dataset to train a Gaussian process model that can be used to predict function at any test point

\[
\begin{align*}
\mu^d(z) &= m(z) + k(z)^\top (K + \sigma^2 I_M)^{-1} (y - m) \\
\Sigma^d(z) &= k(z, z) - k(z)^\top (K + \sigma^2 I_M)^{-1} k(z)
\end{align*}
\]

Rasmussen and Williams, 2016.
Safe Learning-based MPC

Gaussian processes are non-parametric models and quantify uncertainty of predictions

\[g(x, u) \sim \mathcal{N}(\mu^d(x, u), \Sigma^d(x, u)) \]
Safe Learning-based MPC

Control problem that must be solved in real-time

\[
\min_{\pi \in \Pi} \mathbb{E} \left\{ \sum_{i=0}^{N} J(x_i, u_i) \right\}
\]

expected performance (control objective)

s.t. \[x_{i+1} = f(x_i, u_i) + B_d \left(g(x_i, u_i) + v_i \right) \]

system dynamics + uncertainty

\[u_i = \pi(x_i) \]

decision variables

\[h(x_i, u_i) \leq 0 \]

nonlinear state and input constraints

\[x_0 = x \]

measured state to provide feedback

\[\forall i = 0, \ldots, N - 1 \]

Learning of unmodeled phenomena and uncertainty handling for safe learning are naturally incorporated into online decision-making
Application to a kHz-Excited Atmospheric Pressure Plasma Jet in He

1. Identify nominal model

 surface temperature & plasma optical intensity

 $$ x^+ = Ax + Bu $$

 He flowrate & applied voltage

2. Train GP model with 100 data points

3. Objective is to deliver thermal effects at the end of treatment time

 $$ CEM^+ = CEM + K^{(43 - T_s)} \delta t $$

safety-critical applications in plasma medicine
Delivery of Thermal Effects to Complex Surfaces

Control the cumulative thermal effects of plasma

Cumulative equivalent minutes (CEMₜ)
Describes cell death dependence on temperature and exposure time

\[CEM_{43} = \int_0^t K(43 - T_s(\tau)) d\tau \quad [\text{min}] \]

Plasma-surface thermal effect
Cumulative and nonlinear function of temperature

1 min at 43°C = 0.5 min at 44°C
1 min at 43°C = 2 min at 42°C

Learning-based MPC versus MPC with an Offline Trained Model
Online learning enables significant performance improvement while honoring constraints

Faster LTP treatment without compromising safety

Bonzanini et al., 2021.

Is this practical?
Towards Embedded Control Systems for LTPs
Safe and effective operation of fast sampling LTP devices using inexpensive hardware

Real-time control hinges on fast control computations
• Online solution of the optimization problem can be expensive
• Plasmas have fast dynamics, requiring fast sampling times for feedback control
• Point-of-use and portable LTP devices require control implementations on resource-limited embedded systems

Fast embedded predictive control systems
• Sub-millisecond model predictive control computations
• Control implementations on low-memory and low-power embedded systems
• Inexpensive hardware
Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

- Cheap to evaluate
- Low memory footprint

\[\tilde{\kappa}_N(x; p) \approx \kappa_N(x) \]

Explicit control law
MPC law (implicit function of state)

Replacing online solution of an optimization problem

Parisini and Zoppoli, 1995
Chen et al., 2018
Karg and Lucia, 2018
Paulson and Mesbah, 2020
Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

System states & parameters \((x, p)\) → Solve Optimal Control Problem Offline → Optimal system inputs \(u_{0|k}(x, p)\)
Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

Bonzanini et al., 2020.
Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

- Fast control computations
- Control inputs may no longer be robustly feasible (no guarantees on state constraint satisfaction)

DNN training can be done fully offline!

Unsafe control!

Bonzanini et al., 2020.
Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

System states & parameters \((x, p)\)

Solve Optimal Control Problem Offline

Optimal system inputs \(u_{o|k}(x, p)\)

Projection of DNN-based control inputs onto a safe input set

Train Deep Neural Network (DNN)

Cheap-to-evaluate, explicit control law \(N(x, p; \lambda)\)

DNN-based MPC system inputs

Nodes, Layers, Activation Functions

Measured states and parameters \((x, p)\)

Bonzanini et al., 2020.
Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

Safe input set

\[C_u(x) = \{ u \in \mathcal{U} : f(x, u, w) \in \mathcal{C}, \ \forall w \in \mathcal{W} \} \]

Robust control invariant (RCI) set

RCI sets for linear and hybrid systems can be calculated via already-established methods

\[\forall x \in \mathcal{C} \implies \exists u \in \mathcal{U} : f(x, u, w) \in \mathcal{C}, \ \forall w \in \mathcal{W} \]

such that successor states in RCI

\[\kappa^\text{proj}_N(x) = \arg\min_{u \in C_u(x)} \| u - \tilde{x}_N(x) \|_2^2 \]

Safe operation guaranteed

This can be solved as a mp-QP for faster online evaluation!
Training of Deep Neural Network-based MPC

Trade-off between low error and low memory requirement

- Trained the DNN offline using multiple combinations of hyperparameters
- MSE decreases as number of layers and number of nodes per layer increase
- At the same time more nodes and layers correspond to a larger memory footprint
- Trade-off between accuracy and memory requirement

$$N_{\text{layers}} = 5$$
$$N_{\text{nodes}} = 6$$

Bonzanini et al., 2020.
Closed-loop Simulations

DNN-based MPC provides accurate approximation

NMPC and DNN-based NMPC
- Practically indistinguishable performance
- DNN provides an accurate approximation
- Constraint violation → may compromise safety!

PNN-based NMPC
- Worse performance (longer treatment time)
- No constraint violation
- Trade-off between robustness and performance

Bonzanini et al., 2020.
Computation Times

Average computation time reduced by up to a factor of 100

Reduction of average computation time by a factor of 10 – 100!

Solving the MPC problem becomes more costly as problem complexity increases.

DNN-based MPC shows a constant computation time!

Adding the projection step has a small impact on computational cost.

Bonzanini et al., 2020.
Real-time Control Experiments
Safety achieved at the expense of performance

Performance loss due to guaranteed constraint satisfaction under uncertainty without projection.

Constraint violation avoided by projecting onto a safe set with projection.

- Computation time: 2 ms
- Memory footprint: 1 kb
Takeaways

• Predictive control is essential for effective LTP treatment of complex surfaces:
 ▪ Controlled environments for studying plasma effects
 ▪ Safe and effective LTP devices for point-of-use applications
 ▪ Automated and robotic control for LTP processing of (bio)materials

• Learning-based methods can create unique opportunities for:
 ▪ Leveraging high-fidelity LTP models along with data-driven approaches to learn and control
 hard-to-model plasma and surface phenomena
 ▪ Handling uncertainties in real-time decision making towards ensuring safe and repeatable LTP
 treatments