Photoelectron emission from nanostructures triggered by ultrafast laser fields enables the spatiotemporal control of electron motion in femtosecond and nanometer scales. It is important to ultrafast electron microscopy, free-electron lasers and novel nano-vacuum devices [1-3]. For ultra-short pulsed laser induced photoemission, numerical simulations are typically implemented to study the emission property. Simplified Fowler-Nordheim based models are widely used to calculate the photoemission rate, but it works only in the strong optical field regime. To clearly reveal the underlying physics in different emission regimes, a general theory under ultra-short pulsed condition is highly desirable.

Here, we construct an exact analytical theory for the photoelectron emission from a dc biased surface illuminated by few-cycle laser pulses, by solving the time-dependent Schrödinger equation [4, 5]. The single formulation is valid from photon-driven electron emission in low intensity optical fields to field-driven emission in high intensity optical fields. Our calculations exhibit the coherent interaction of neighboring laser pulses on the photoelectron emission (Fig. 1) and recover the experimentally measured carrier-envelope-phase sensitivity [6] accompanied by a π phase shift in the optical-field regime (Fig. 2). We also find adding a large dc field to the photoemitter is able to greatly enhance the photoemission current and shorten the electron emission pulse.

*Work supported by AFOSR YIP Award No. FA9550-18-1-0061 and ONR YIP Grant No. N00014-20-1-2681.

References