Development of a Gas-Puff Z-Pinch Experiment for the 1-MA, 100-ns MAIZE Linear Transformer Driver*

Akash P. Shah a, Mary K. Bossard b, Brendan J. Sporer b, George V. Dowhan a, Kristi W. Elliott c, Mahadevan Krishnan c, Nicholas M. Jordan b and Ryan D. McBride a, b

(a) Applied Physics, University of Michigan (akashah@umich.edu)
(b) Nuclear Engineering and Radiological Sciences, University of Michigan
(c) Alameda Applied Sciences Corporation

The Z-machine at Sandia National Laboratories is instrumental in plasma physics research across a range of applications. University-scale z-pinch experiments, such as gas-puff z-pinches, can inform the high-value experiments conducted on the Z facility. A gas-puff z-pinch requires gas to be puffed into the anode-cathode gap, which is then pulsed with a high voltage [1]. The gas is ionized, accelerated, and compressed as the current flows across the electrodes, allowing for study of pinch phenomena including fusion reactions [2]. The initial ionization condition of the gas-puff prior to compression is poorly understood. Additionally, how this affects fusion, which is largely the result of micro-pinch instabilities, is also poorly understood. We report on the preliminary results from the newly developed experimental capability on the MAIZE Linear Transformer Driver at the University of Michigan

* Work supported in part by a seed grant from the Michigan Memorial Phoenix Project and the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0003764.

References